

International Conference on Artificial Intelligence in Education Technology (AIET 2021)

TIM SCHLIPPE & JÖRG SAWATZKI

CROSS-LINGUAL

AUTOMATIC SHORT ANSWER GRADING

Wuhan, China July 4, 2021

Motivation Cross-Lingual Automatic Short Answer Grading Experimental Setup Experiments and Results Conclusion and Future Work

AGENDA

Sources: United Nations: Sustainable Development Goals: 17 Goals to Transform our World (2021); OpenClipart-Vectors/154119/Pixabay.

Sources: United Nations: Sustainable Development Goals: 17 Goals to Transform our World (2021); OpenClipart-Vectors/154119/Pixabay; Statista: The Most Spoken Languages Worldwide in 2019 (2020).

? Wat is het belangrijkste voordeel van functieargumenten die via verwijzing worden doorgegeven? 22:07

location.

? The question:

Thank you for your answer! 👍

Chats

ASAG

A variable saves a value at a certain

15:30 🗸

Het voordeel is dat variablen die als argument doorgegeven worden direkt aangepast worden. 22:08 1

Bedankt voor je antwoord!

? De vraag: Wat is het belangrijkste voordeel van functieargu erwijzing worden doorgegeven?

What is a variable? Uw antwoord: et voordeel is dat variablen die als argument do 📏 Your answer:

CROSS-LINGUAL AUTOMATIC SHORT ANSWER GRADING

The ciifer: 3 van 5 punten 🙀 🙀 🏹 Geweldig, dat geeft ons brandstof voor 6 miljoen Slechts 44 miljoen km verwijderd van Mars! 🜍 🚀 🦦

Graphic Source: Schlippe & Sawatzki (2021a).

	Question	What is a variable?
	Model answer	A location in memory that can store a value.
	Answer 1	Eine Stelle im Speicher, die einen Wert speichern kann.
	Grading: Answer 1	5 of 5 points
★**	Answer 2	变量可以是整数,也可以是程序中的字符串。
	Grading: Answer 2	2 of 5 points

Graphic Source: Custom Depiction.

02

CROSS-LINGUAL AUTOMATIC SHORT ANSWER GRADING

Graphic Source: Custom Depiction.

Graphic Source: Custom Depiction.

04.07.2021 **11** Cross-Lingual Automatic Short Answer Grading

04.07.2021 **12** Cross-Lingual Automatic Short Answer Grading

EXPERIMENTAL SETUP

EXPERIMENTAL SETUP

Graphic Source: Custom Depiction.

EXPERIMENTAL SETUP

Question		What is a variable	e?			
Μ	lodel answer	A location in me	mory that can store a	value.		
E	xample: Answer 1	A variable is a location in memory where a value can be stored. 5 of 5 points				
G	rading: Answer 1					
E	xample: Answer 2	Variable can be an integer or a string in a program.				
G	rading: Answer 2	2 of 5 points				
	Translation Model	Google's Neural (Wu et al., 2016; A	Machine Translation S iken, 2019)	System Translation Model		
Question	Was ist eine Variable?	· · · · · ·	Question	什么是变量?		
Model answer	Eine Stelle im Speicher, die einen W	ert speichern kann.	Model answer			
Example: Answer 1	an dem ein Wert gespeichert werden	kann.	Example: Answer 1	变量是内存中可以存储值的位置。		
Grading: Answer 1	Grading: Answer 1 5 of 5 points		Grading: Answer 1	5 of 5 points		
Example: Answer 2	Eine Variable kann in einem Program oder ein String sein.	nm ein Integer	Example: Answer 2	变量可以是整数,也可以是程序中的字符串。		
Grading: Answer 2	2 of 5 points		Grading: Answer 2	2 of 5 points		

Sources: Schlippe & Sawatzki (2021b); Mohler et al. (2011).

04.07.2021 **15** Cross-Lingual Automatic Short Answer Grading

	multi+	mono						
	en	de	nl	jp	zh	fi	6	_
en	0.45	0.61	0.64	0.68	0.63	0.63	0.43	0.43
ceb	0.70	0.73	0.72	0.68	0.72	0.71	0.63	-
SV	0.63	0.67	0.68	0.73	0.72	0.68	0.48	-
de	0.64	0.51	0.67	0.70	0.70	0.65	0.46	0.45
\mathbf{fr}	0.61	0.66	0.64	0.67	0.70	0.67	0.54	-
nl	0.62	0.64	0.52	0.70	0.73	0.67	0.45	0.47
ru	0.68	0.73	0.83	0.74	0.75	0.78	0.52	-
it	0.62	0.65	0.72	0.71	0.73	0.70	0.52	-
es	0.61	0.68	0.76	0.68	0.72	0.65	0.49	-
pl	0.62	0.71	0.77	0.69	0.72	0.68	0.51	-
vi	0.71	0.72	0.84	0.77	0.73	0.71	0.52	-
jp	0.66	0.70	0.73	0.49	0.63	0.71	0.44	0.53
zh	0.63	0.71	0.77	0.69	0.50	0.79	0.41	0.44
ar	0.72	0.78	0.85	0.78	0.76	0.76	0.59	-
uk	0.65	0.70	0.82	0.73	0.73	0.75	0.54	-
pt	0.59	0.67	0.75	0.69	0.73	0.69	0.50	-
fa	0.64	0.66	0.71	0.67	0.70	0.69	0.56	-
ca	0.64	0.70	0.74	0.70	0.76	0.67	0.53	-
sr	0.69	0.81	0.83	0.76	0.79	0.86	0.56	-
id	0.66	0.68	0.69	0.70	0.79	0.63	0.49	-
no	0.63	0.69	0.65	0.75	0.71	0.69	0.45	-
ko	0.70	0.70	0.76	0.66	0.66	0.67	0.58	-
fi	0.69	0.79	0.77	0.77	0.73	0.52	0.47	0.45
hu	0.69	0.76	0.81	0.72	0.76	0.69	0.54	-
cs	0.62	0.77	0.82	0.72	0.78	0.71	0.51	-
sh	0.66	0.77	0.79	0.74	0.78	0.79	0.53	-

Mean Absolute Error out of 5 points

Graphic Sources: Schlippe & Sawatzki (2021b).

04.07.2021 17 Cross-Lingual Automatic Short Answer Grading

	multi+	mono						
	en	de	nl	jp	zh	fi	6	
en	0.45	0.61	0.64	0.68	0.63	0.63	0.43	0.43
ceb	0.70	0.73	0.72	0.68	0.72	0.71	0.63	-
SV	0.63	0.67	0.68	0.73	0.72	0.68	0.48	-
de	0.64	0.51	0.67	0.70	0.70	0.65	0.46	0.45
\mathbf{fr}	0.61	0.66	0.64	0.67	0.70	0.67	0.54	-
nl	0.62	0.64	0.52	0.70	0.73	0.67	0.45	0.47
ru	0.68	0.73	0.83	0.74	0.75	0.78	0.52	-
it	0.62	0.65	0.72	0.71	0.73	0.70	0.52	-
es	0.61	0.68	0.76	0.68	0.72	0.65	0.49	-
pl	0.62	0.71	0.77	0.69	0.72	0.68	0.51	-
vi	0.71	0.72	0.84	0.77	0.73	0.71	0.52	-
jp	0.66	0.70	0.73	0.49	0.63	0.71	0.44	0.53
zh	0.63	0.71	0.77	0.69	0.50	0.79	0.41	0.44
ar	0.72	0.78	0.85	0.78	0.76	0.76	0.59	-
uk	0.65	0.70	0.82	0.73	0.73	0.75	0.54	-
pt	0.59	0.67	0.75	0.69	0.73	0.69	0.50	-
fa	0.64	0.66	0.71	0.67	0.70	0.69	0.56	-
ca	0.64	0.70	0.74	0.70	0.76	0.67	0.53	-
sr	0.69	0.81	0.83	0.76	0.79	0.86	0.56	-
id	0.66	0.68	0.69	0.70	0.79	0.63	0.49	-
no	0.63	0.69	0.65	0.75	0.71	0.69	0.45	-
ko	0.70	0.70	0.76	0.66	0.66	0.67	0.58	-
fi	0.69	0.79	0.77	0.77	0.73	0.52	0.47	0.45
hu	0.69	0.76	0.81	0.72	0.76	0.69	0.54	-
cs	0.62	0.77	0.82	0.72	0.78	0.71	0.51	-
$^{\rm sh}$	0.66	0.77	0.79	0.74	0.78	0.79	0.53	-

INTERNATIONAL UNIVERSITY OF APPLIED SCIENCES

Mean Absolute Error out of 5 points

Graphic Sources: Schlippe & Sawatzki (2021b).

04.07.2021 18 Cross-Lingual Automatic Short Answer Grading

0.500 RUNRINGIUM

	multi+	multi+	rel.
	en	6	improvement
en	0.45	0.43	4.4%
de	0.64	0.46	28.1%
nl	0.62	0.45	27.4%
јр	0.66	0.44	33.3%
zh	0.63	0.41	34.9%
fi	0.69	0.47	31.9%

Mean Absolute Error out of 5 points (Human grader variability: 0.75) INTERNATIONAL

UNIVERSITY OF

→ Up to 35% improvement by adding more languages

Graphic Sources: Schlippe & Sawatzki (2021b).

04.07.2021 **19** Cross-Lingual Automatic Short Answer Grading

	multi+	multi+	rel.
	<i>L</i> target	6	improvement
en	0.45	0.43	4.4%
de	0.51	0.46	9.8%
nl	0.52	0.45	13.5%
јр	0.49	0.44	10.2%
zh	0.50	0.41	18.0%
fi	0.52	0.47	9.6%

Mean Absolute Error out of 5 points (Human grader variability: 0.75) TERNATIONAL

→ Even with data in the target language, adding the 5 languages provides improvements of up to 18%

Graphic Sources: Schlippe & Sawatzki (2021b).

CONCLUSION AND FUTURE WORK

CONCLUSION AND FUTURE WORK

Conclusion

- Potential of cross-lingual automatic short answer grading
- Analysis on 26 languages
- Mean Absolute Errors (MER) between 0.41 and 0.72 points out of 5 points
- Less discrepancy than 2 human graders
- Augmenting training data with machine translated task-specific data for finetuning improves multilingual models
- Results experimentally

CONCLUSION AND FUTURE WORK

Conclusion

- Potential of cross-lingual automatic short answer grading Analysis on 26 languages
- Mean Absolute Errors (MER) between 0.41 and 0.72 points out of 5 points
- Less discrepancy than 2 human graders
- Augmenting training data with machine translated task-specific data for finetuning improves multilingual models
- Results experimentally

Future Work

- Extension to other languages
- Integration and application for
 - online exams
- Interactive training programs for exam preparation (Schlippe & Sawatzki, 2021a)
- Address the issue of explainability to provide better
 - support to human graders

FUTURE WORK

Question 1/3: What are r	uminants?	Question to be an	swered		
Student answer An example are cows that regur able to digest food better.	gitate their nou	Given answer rishment and chew it up again. They	do this in order to be		
Model answer (Maximur Ruminants regurgitate prediges	m 2 points) ted food from ti	Model answer wit	<mark>h score</mark> again (1 point).		
AI Assistant					
AI PREDICTION 2 points	EXPL High the i	ANATION lighted in color, you can se ndividual words were for t	Information p by the AI assis Different info	rovided stant. rmation	
An example are cows that regurgitate their nourishme it up again. They do this in order to be able to digest f					
Irrelevant		Very relevant			
Your scoring (in points)					
2 •		Your task is to assi using the model a Al assistants.	gn a score (in nswer and the	points)	

Try it out and support us.

04.07.2021 24 Cross-Lingual Automatic Short Answer Grading

THANK YOU

Tim Schlippe tim.schlippe@iu.org

REFERENCES

Literature

- United Nations: Sustainable Development Goals: 17 Goals to Transform our World (2021): https://www.un.org/sustainabledevelopment/sustainable-development-goals
- Statista: The Most Spoken Languages Worldwide in 2019 (2020):
- https://www.statista.com/statistics/266808/the-most-spoken-languages-worldwide Schlippe, T. & Sawatzki, J. (2021a): AI-based Multilingual Interactive Exam Preparation. In: Proceedings of The Learning Ideas Conference 2021 (14th annual conference), ALICE - Special Conference Track on Adaptive Learning via Interactive, Collaborative and Emotional Approaches, New York, New York, 14-18 June 2021. In: Advances in Intelligent Systems and Computing, Springer, 2021.
- Devlin, J., Chang, M.W., Lee, K., & Toutanova, K. (2019): BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. In: NAACL-HLT, Minneapolis, Minnesota.
- Pires, T., Schlinger, E., & Garrette, D. (2019): How Multilingual is Multilingual BERT? In: ACL. Florence, Italy. Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L., & Stoyanov, V. (2019): RoBERTa: A Robustly Optimized BERT Pretraining Approach. arXiv:1907.11692.

Images Images provided by OpenClipart-Vectors/154119/Pixabay. (https://pixabay.com/vectors/internationalproject-world-154119 [last access: 16.16.2021]) Coursebook (NLP and Computer Vision): IU International University of Applied Sciences. Version No.: 001-2020-1211.

Literature	
 Conneau, A., Khandelwal, K., Goyal, N., Chaudhary, V., Wenzek, G., Guzmán, F., Grave, E., Ott, M., Zettlemoyer, L., & Stoyanov, V. (2018): Unsupervised lingual Representation Learning at Scale. arXiv:1911.02116. Burrows, S., Gurevych, I., & Stein, B. (2014): The Eras and Trends of Automatic Short Answer Grading. In: IJAIED 25, 60–117. Camus, L. & Filighera, A. (2020): Investigating Transformers for Automatic Short Answer Grading. AIED. Cyberspace. Answers. In: AIET, Wuhan, China. Schlippe, T. & Benner-Wickner, M. (2021): Deep Learning Techniques for Automatic Short Answer Grading: Predicting Scores for English and Gerr. Answers. In: AIET, Wuhan, China. Schlippe, T. & Sawatzki, J. (2021b): Cross-Lingual Automatic Short Answer Grading. In: AIET, Wuhan, China. Mohler, M., Bunescu, R., & Mihalcea, R. (2011): Learning to Grade Short Answer Questions using Semantic Similarity Measures and Dependency Graph Alignm. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. pp. 752–762. Association for Computational Linguistics: Human Language Technologies. pp. 752–762. Association for Computational Linguistics: Human Language Technologies. pp. 752–762. Association for Computational Linguistics: Human Language Technologies. pp. 752–762. 	nd Cross-

04.07.2021 27 Cross-Lingual Automatic Short Answer Grading