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ABSTRACT

ChatGPT has the ability to generate grammatically flawless and seemingly-human replies to dif-
ferent types of questions from various domains. The number of its users and of its applications is
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Abstract itis crucial to identify and remove automated spam or malicious
content [2].
Generative models, such as ChatGPT, have gained sig- In this paper. we present a classification model for automati-
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98% accuracy for detecting Al-generated essays



English Wikipedia Texts

Biology Chemistry
Geography History
T Music
Politics Religion
Sports Visual Arts
100 Texts

HUMAN-AI-GENERATED TEXT CORPUS

Prompt + Title

Prompt + Title

Prompt + Text

Prompt + Text
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ChatGPT Basic Generated

ChatGPT Advanced Generated

ChatGPT Basic Rephrased

ChatGPT Advanced Rephrased

4 x 100 Texts

Human-Al-Generated Text Corpus

Corpus available on GitHub:

https://github.com/LorenzM97/human-Al-generatedTextCorpus 5
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Basic Generated Advanced Generated
Prompt Prompt
Generate a text on the following topic: Australia Generate a text on the following topic in a way a human

would do it: Australia

Basic Rephrased Advanced Rephrased

Prompt Prompt

Rephrase the following text: Australia, officially the Rephrase the following text in a way a human would do
Commonwealth of Australia, is a sovereign country [...]. it: Australia, officially the Commonwealth of Australia, is a

sovereign country [...].




FEATURES

Perplexity Features

Mean & max perplexity

Error-Based Features

Grammar errors

Multiple blanks

Semantic Features

Polarity

Objectivity vs. Subjectivity

Readability Features

Flesch Reading Ease

Flesch-Kincaid Grade Level

List Lookup Features

Stop words (a, the, of)

Personal Pronouns
(you, we, them)

Al Feedback Features

@ChatGPT:
“Was this text generated by
ChatGPT? [text]”
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Document Features

Mean & std of words per
sentence

Unique words per paragraph

Text Vector Features

TF-IDF

Sentence Vector



FEATURES

<

Semantic
Features

Perplexity
Features

List Lookup
Features

Al Feedback
Features

Error-Based
Features

Readability
Features

Document
Features

1010
1010

Text Vector
Features

8 feature categories, 37 features
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Category Feature Description Reference
Perplexity PPLpean mean PPL [21][14][19]
PPL,,.x maximum PPL [21][14][19]
Semantic sentiment polarity degree of positivity /negativity [-1,+1] [14][19]
sentimentsubjectivity degree of subjectivity [0,41] new
List Lookup stopWordeount number of stop words [17]
specialCharount number of special characters (28]
discourseMarkercount number of discourse markers new
title Repetitioncount absolute repetitions of title new
title Repetition,cigtive relative repetitions of title new
Document wordsPer Paragraph,con @number of words per paragraph 28]
words Per Paragraphsides stdev of wordsPer Paragraph 28]
sentences Per Paragraphmean @number of sentences per paragraph 28]
sentences Per Paragraphsides stdev of sentencesPer Paragraph 28]
words PerSentenceean gnumber of words per sentence 28]
wordsPerSentencesige, stdev of wordsPerSentence 28]
unigWords Per Sentencemean gnumber of unique words per sentence 17]
unigWordsPerSentencegtgeq, stdev of unigWordsPerSentence new
words count number of running words [19][17][28
unigWordscount number of unique words 28
unigWordsretative relative number of unique words 28
paragraphcount number of paragraphs 28
sentence ount number of sentences 28
punctuationcount number of punctuation marks 28
quotationcount number of quotation marks new
character qunt number of characters 28
uppercaseWords .ciative relative number of words in uppercase 17
personal Pronouncount absolute number of personal pronouns 14
personal Pronoun,elative relative number of personal pronouns 14
POSPerSentencemcan #number of unique POS-tags/sentence [19][28][18
Error-Based grammarError.ount number of spelling/grammar errors new
multiBlankcount number of multiple blanks new
Readability fleschReadingEase Flesch Reading Ease score [0-100] [17][29]
fleschKincaidGradeLevel Readability as U.S. grade level [0-100] [17][30]
Al Feedback  AlFeedback Ask Al if text was generated by Al new
Text Vector TF-IDF 500-dim TF-IDF vector of 1-/2-grams [17][31]
Sentence-BERT #Sentence-BERT vector [32]
Sentence-BERT-dist #distance of Sentence-BERT vectors new

Table 3:

Summary of our Features for the Classification of Generated Texts.
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EXPERIMENTS AND RESULTS 1U e
OUR APPROACH

Data Gathering > DataAnalysis >
Text Corpus
Baseline
Human Data Al Data
Wikipedia English Basic Generated GPTZzero Training for:

Human vs. basic Al-generated
Advanced Generated

Training of Classifiers Human vs. advanced Al-generated

Basic Rephrased Evaluation .
XGBoost Human vs. basic Al-rephrased
F1-Score
Advanced Rephrased _
o ey Human vs. advanced Al-rephrased

) . Accuracy
Feature Selection Multilayer
Perceptron

Well performing
features
Feature Categories

New features



RESULTS

XGBoost
Feature Category Acc F1 Acc

RF

F1

Acc

MLP
F1

Perplexitysraditional

Sﬂmﬁntictrﬂa ditional
Sﬂmﬁntictrﬂa ditional +new

List Look UPtraditional
ListLook UPtraditional +new

Dﬂcumenttraditiﬂnai
Dﬂﬂumﬂnttraditiona£+new

ErrorBased,, ..

Rﬂadabih'tyt raditional

Al Feedbackqew

TextVectoriraditional
TEItVECtOTt raditional +new

A”t raditional
A”t raditional +new

Table 4: Results for Basic Text Generation: XGBoost vs. RF vs. MLP

(ACCGPTZETD = 75.0%, FlQpTZEM = 78.9%).
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F1-Score
100
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Our Best Systems GPTZero

F1-Scorein %
o o

o

o

1 Basic Generated Advanced Generated m Basic Rephrased ~ Advanced Rephrased
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CONCLUSION & FUTURE WORK

Generated > Rephrased

Best F1-score for Al-generated texts: 98%
Best F1-score for Al-rephrased texts: 78%

GPTZero < Our Systems

Our best basic text rephrasing detection
system performs almost twice as good

Future Work

Improvement of text generation
Investigation of other domains & languages
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