

The 4th International Conference on Artificial Intelligence in Education Technology (AIET 2023)

TIM SCHLIPPE & KATHARINA EICHINGER

AI-BASED MULTILINGUAL TEXT SIMPLIFICATION

Berlin, Germany July 1, 2023

MOTIVATION

Disadvantaged

People with reading and spelling difficulties and people with cognitive impairments benefit

Disadvantaged

People with reading and spelling difficulties and people with cognitive impairments benefit

L2 Learners

Non-native speakers find it easier to understand and learn the new language

Disadvantaged

People with reading and spelling difficulties and people with cognitive impairments benefit

Students

Simpler texts enable the comprehension of more complex topics

L2 Learners

Non-native speakers find it easier to understand and learn the new language

Disadvantaged

People with reading and spelling difficulties and people with cognitive impairments benefit

L2 Learners

Non-native speakers find it easier to understand and learn the new language

Students

Simpler texts enable the comprehension of more complex topics

Elderly

Older people often have a shorter attention span and thus find it easier to understand texts

01

Education

Material

Make complex topics more accesible; Learning a new language 02

Text

Summarization

03

Medical

Field

04

Government

Communication

05

News

01

Education

Material

Make complex topics more accesible; Learning a new language 02

Text

Summarization

Reduce complexity to make resulting summaries more accesible 03

Medical

Field

04

Government

Communication

05

News

01

Education

Material

Make complex topics more accesible; Learning a new language 02

Text

Summarization

Reduce complexity to make resulting summaries more accesible 03

Medical

Field

Improve patient understanding, reduce confusion, increase compliance

04

Government

Communication

05

News

01

Education

Material

Make complex topics more accesible; Learning a new language 02

Text

Summarization

Reduce complexity to make resulting summaries more accesible 03

Medical

Field

Improve patient understanding, reduce confusion, increase compliance

04

Government

Communication

Improve transparency, especially for laws, regulations, etc.

05

News

Education

Material

Make complex topics more accesible; Learning a new language

02

Text

Summarization

Reduce complexity to make resulting summaries more accesible

03

Medical

Field

Improve patient understanding, reduce confusion, increase compliance

Government

Communication

Improve transparency, especially for laws, regulations, etc.

News

Articles

Educate a broader audience about what is going on in the world

INTERNATIONAL UNIVERSITY OF APPLIED SCIENCES

RELATED WORK

TRANSFORMERS

- Introduced in 2017 by Vaswani et al.
- **Self-attention** mechanism: allows the network to weigh the importance of different input features
- Consists of an **encoder** & a **decoder** encoder: takes the input sequence and produces a sequence of hidden states decoder: takes output & generates a target sequence
- Approaches: Omelianchuk et al. (2021): Text Simplification by Tagging (TST); Truica et al. (2022): Simplex

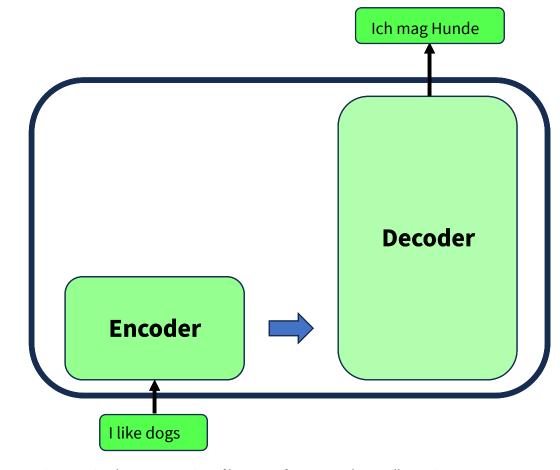


Figure 1: simple representation of how transformers work; own illustration

CHALLENGE: PARALLEL CORPORA

01

Lack of parallel

Ressources

Simplified content exists in many languages, but not in parallel 02

Different

Levels

There are different gradations concerning simplifications

03

Poor

Quality

The corpora that exist are qualitatively insufficient

04

Costly

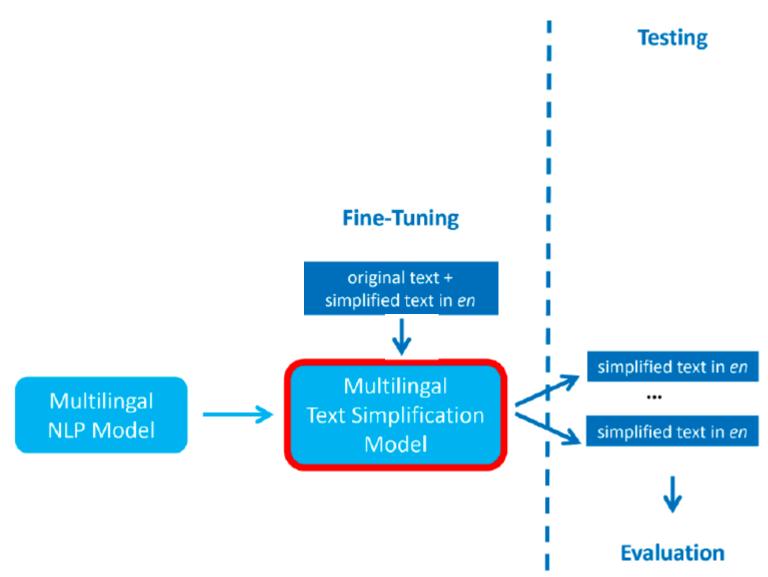
Generation

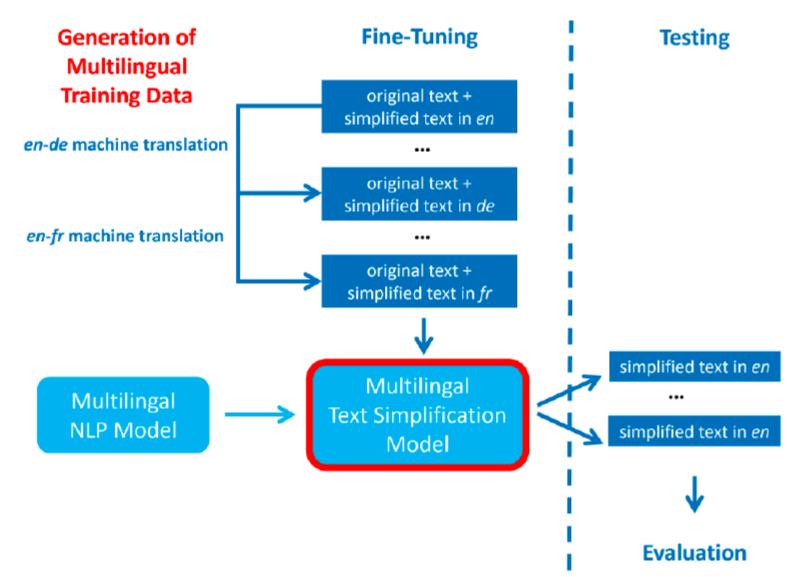
Generating parallel corpora manually takes time and ressources

05

Low-ressource

Scenarios


Especially in lowressource languages there is much less simplified content



MULTILINGUAL MODEL

SPECIFICATIONS OF MY EXPERIMENTAL SETUP

Model

Data

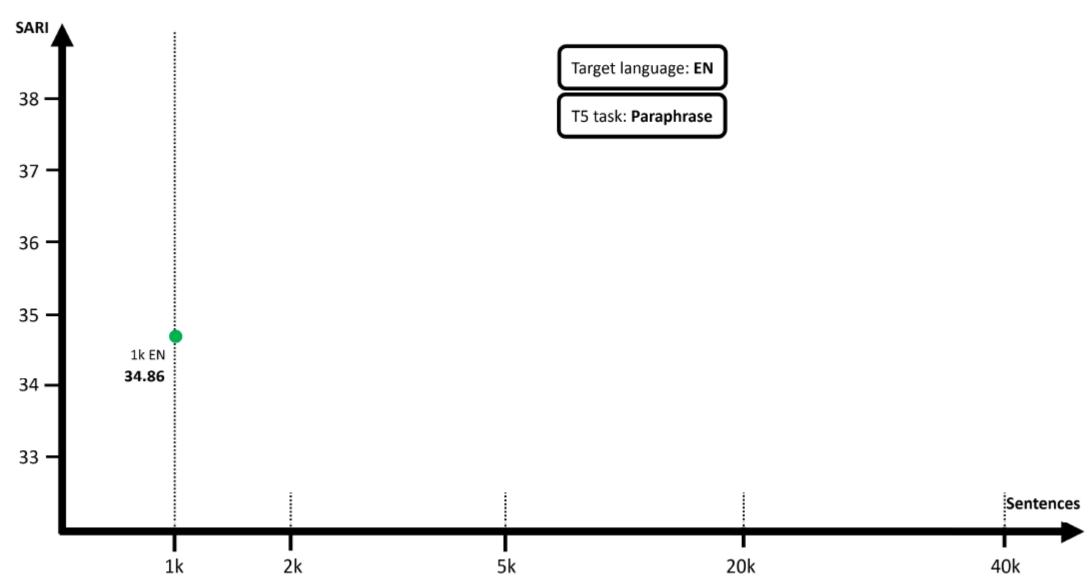
Languages

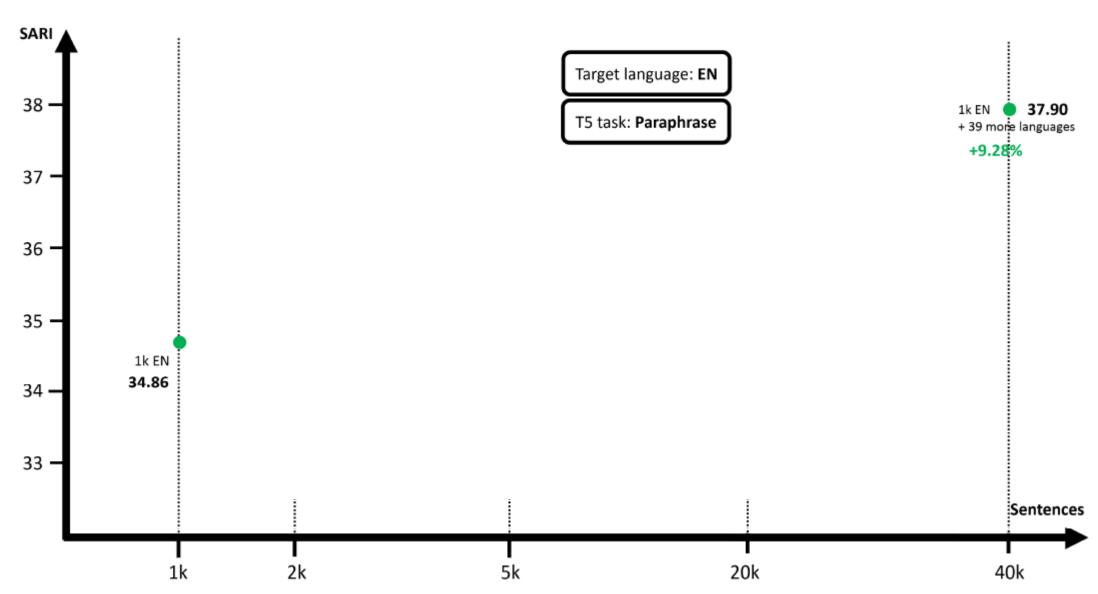
Google's Flan-T5-Base

64 languages

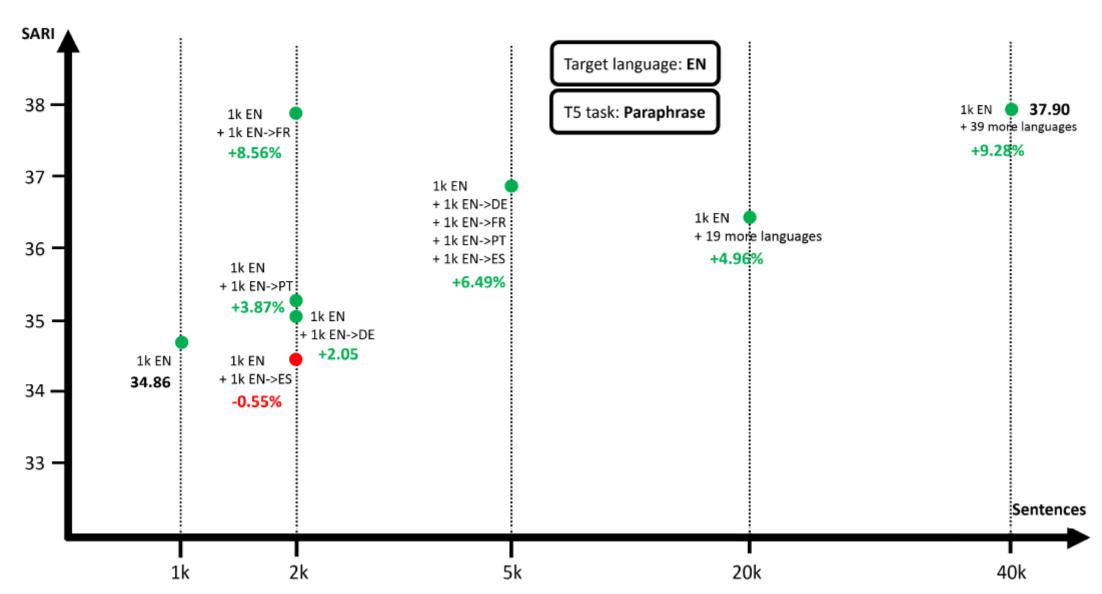
8 epochs

3 tasks: Translate, Summarize, Paraphrase


- ASSET corpus
- Training set: 1,000 sentences & its translations to enrich training data
- Test set: 500 sentences & its translations to evaluate our 5 languages
- Validation set: 25% of training set
- Target: English, German, Portuguese, French, Spanish
- Translated with Google Translate API
- Trained with a total of 40 languages / 40,000 sentences



EXPERIMENTS & RESULTS



ALL RESULTS

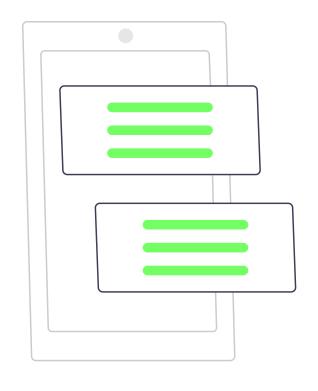
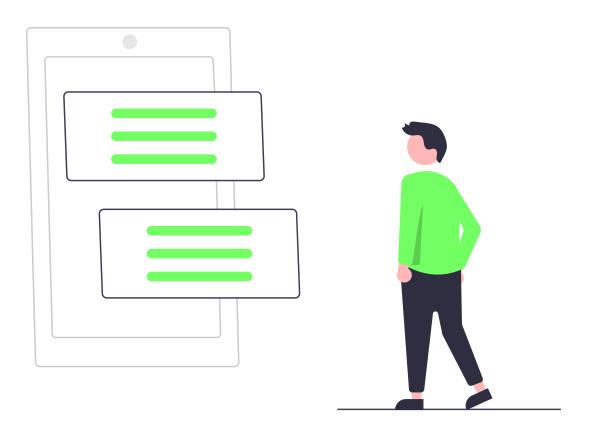

		SARI
EN baselines	Translate1kEN	33.35
	Summarize _{1kEN}	33.53
	Paraphrase _{1kEN}	34.68
Best EN system	Paraphrase1kEN+39k	37.90
relative change to baseline		9.28%
DE baselines	Translate1kDE	28.13
	Summarize _{1kDE}	27.69
	Paraphrase _{1kDE}	27.63
Best DE system	Paraphrase1kDE+39k	29.60
relative change to baseline		5.23%
FR baselines	Translate1kFR	22.70
	Summarize _{1kFR}	22.70
	Paraphrase _{1kFR}	22.79
Best FR system	Paraphrase1kFR+39k	23.31
relative change to baseline		2.28%
ES baselines	Translate1kES	30.60
	Summarize _{1kES}	31.16
	Paraphrase1kES	30.78
Best ES system	Paraphrase1kES+39k	32.79
relative change to baseline		5.23%
PT baselines	Translate1kPT	31.32
	Summarize _{1kPT}	31.44
	Paraphrase _{1kPT}	31.94
Best PT system	Paraphrase1kPT+39k	33.60
relative change to baseline		5.23%

Table 1: Baseline systems vs. Best systems and relative change; source: Schlippe and Eichinger (2023)

HUMAN EVALUATION - SETUP

- 105 participants
- Compare my model to OpenAI's **ChatGPT**
- 5 English & German sentences from university scripts in social sciences
- 5 **criteria**:
 - Content
 - Fluency
 - Comprehensibility
 - Grammar
 - Simplification

HUMAN EVALUATION - RESULTS



	My Model	ChatGPT	Relative change
content	4.13	4.34	-4.48%
fluency	4.40	4.29	+2.56%
comprehensibility	4.41	4.31	+2.32%
grammar	4.47	4.42	+1.13%
simplification	4.11	4.11	0.00%
average change			+0.24%

Table 2: Scores in each category for the English simplifications with the relative change; source: own results

	My Model	ChatGPT	Relative change
content	3.31	4.09	-19.07%
fluency	4.39	4.09	+7.33%
comprehensibility	4.34	4.03	+7.69%
grammar	4.49	4.29	+4.66%
simplification	4.22	3.39	+25.48%
average change			+5.02%

Table 3: Scores in each category for the German simplifications with the relative change; source: own results

07/01/2023

CONCLUSION

CONCLUSION

- Text simplification models can transform how people engage with complex texts
- **cross-lingual training** in text simplification models can improve performance, particularly in low-resource scenarios
 - → with only 1,000 training sentences and a translator API I created a corpus consisting of 40,000 sentence pairs
- Effectiveness of cross-lingual training may vary based on the target language
- Our model outperformed OpenAI's ChatGPT during human evaluation

FUTURE WORK

Identify compatible languages

Enlarge multilingual corpus Collaborate with (linguistic) experts

THANK YOU

Tim Schlippe **▼** tim.schlippe@iu.org

SOURCES

Alva-Manchego, Fernando, Louis Martin, Antoine Bordes, Carolina Scarton, Benoît Sagot, and Lucia Specia. "ASSET: A Dataset for Tuning and Evaluation of Sentence Simplification Models with Multiple Rewriting Transformations." In *Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics*, 4668–79. Online: Association for Computational Linguistics, 2020. https://doi.org/10.18653/v1/2020.acl-main.424.

Alva-Manchego, Fernando, Carolina Scarton, and Lucia Specia. "The (Un)Suitability of Automatic Evaluation Metrics for Text Simplification."

Alva-Manchego, Fernando, Carolina Scarton, and Lucia Specia. "The (Un)Suitability of Automatic Evaluation Metrics for Text Simplification." *Computational Linguistics* 47, no. 4 (December 2021): 861–89. https://doi.org/10.1162/coli_a_00418.

Bercken, Laurens van den, Robert-Jan Sips, and Christoph Lofi. "Evaluating Neural Text Simplification in the Medical Domain." In *The World Wide Web Conference*, 3286–92. WWW '19. New York, NY, USA: Association for Computing Machinery, 2019. https://doi.org/10.1145/3308558.3313630.

Brunato, Dominique, Felice Dell' Orletta, and Giulia Venturi. "Linguistically-Based Comparison of Different Approaches to Building Corpora for Text Simplification: A Case Study on Italian," Vol. 13, 2022. https://doi.org/10.3389/fpsyg.2022.707630.

Chung, Hyung Won, Le Hou, S. Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, et al. "Scaling Instruction-Finetuned Language Models." *ArXiv* abs/2210.11416 (2022). https://doi.org/10.48550/arXiv.2210.11416.

Hirsh, David, and Paul Nation. "What Vocabulary Size Is Needed to Read Unsimplified Texts for Pleasure?" *Reading in a Foreign Language*, 1992.

Krashen, Stephen D. Second Language Acquisition and Second Language Learning. Hoboken: Prentice-Hall International, 1988.

Kubota, Ryuko. "The Politics of Cultural Difference in Second Language Education." *Critical Inquiry in Language Studies* 1, no. 1 (2004): 21–39. https://doi.org/10.1207/s15427595cils0101 2.

Omelianchuk, Kostiantyn, Vipul Raheja, and Oleksandr Skurzhanskyi. "Text Simplification by Tagging." In *Proceedings of the 16th Workshop on Innovative Use of NLP for Building Educational Applications*, 11–25. Online: Association for Computational Linguistics, 2021. https://aclanthology.org/2021.bea-1.2.

Paetzold, Gustavo, and Lucia Specia. "Unsupervised Lexical Simplification for Non-Native Speakers." *Proceedings of the AAAI Conference on Artificial Intelligence* 30, no. 1 (March 2016). https://doi.org/10.1609/aaai.v30i1.9885.

Papineni, Kishore, Salim Roukos, Todd Ward, and Wei-Jing Zhu. "BLEU: A Method for Automatic Evaluation of Machine Translation." In *Proceedings of the 40th Annual Meeting on Association for Computational Linguistics*, 311–18. ACL '02. USA: Association for Computational Linguistics, 2002. https://doi.org/10.3115/1073083.1073135.

Petersen, Sarah E., and Mari Ostendorf. "Text Simplification for Language Learners: A Corpus Analysis." In Slate, 2007.

SOURCES

Post, Matt. "A Call for Clarity in Reporting BLEU Scores," 186–91, 2018. https://doi.org/10.18653/v1/W18-6319.

Qiang, Jipeng, and Xindong Wu. "Unsupervised Statistical Text Simplification." *IEEE Transactions on Knowledge and Data Engineering* 33, no. 4 (2021): 1802–6. https://doi.org/10.1109/TKDE.2019.2947679.

Schlippe, Tim, and Eichinger, Katharina. "Multilingual Text Simplification and its Performance on Social Sciences Coursebooks." In The 4th International Conference on Artificial Intelligence in Education Technology (AIET 2023), Berlin, Germany, 31 June-2 July 2023.

Schwarzer, Max, and David Kauchak. "Human Evaluation for Text Simplification: The Simplicity-Adequacy Tradeoff," 2018.

Siddharthan, Advaith. "A Survey of Research on Text Simplification." *ITL - International Journal of Applied Linguistics* 165 (December 2014): 259–98. https://doi.org/10.1075/itl.165.2.06sid.

Stajner, Sanja. "Automatic Text Simplification for Social Good: Progress and Challenges." In *Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021*, 2637–52. Online: Association for Computational Linguistics, 2021. https://doi.org/10.18653/v1/2021.findings-acl.233.

Sulem, Elior, Omri Abend, and Ari Rappoport. "BLEU Is Not Suitable for the Evaluation of Text Simplification." In *Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing*, 738–44. Brussels, Belgium: Association for Computational Linguistics, 2018.

https://doi.org/10.18653/v1/D18-1081.

Truică, Ciprian-Octavian, Andrei-Ionuţ Stan, and Elena-Simona Apostol. "SimpLex: A Lexical Text Simplification Architecture." *Neural Computing and Applications*, November 18, 2022. https://doi.org/10.1007/s00521-022-07905-y.

Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. "Attention Is All You Need." In *Advances in Neural Information Processing Systems*, edited by I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, Vol. 30. Curran Associates, Inc., 2017. https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf. Xu, Wei, Courtney Napoles, Ellie Pavlick, Quanze Chen, and Chris Callison-Burch. "Optimizing Statistical Machine Translation for Text Simplification." *Transactions of the Association for Computational Linquistics* 4 (July 2016): 401–15. https://doi.org/10.1162/tacl_a_00107.