1．Overview

Goal

－Prediction of Code Switches based on textual features（words and POS tags）
－Extended structure of recurrent neural networks for Code－Switching ＝＞ $10.8 \%(2 \%)$ relative improvement in terms of perplexity（WER）on the SEAME development set and $16.9 \%(2.7 \%)$ relative on the evaluation set

What is Code－Switching（CS）？

－Code－Switching speech is defined as speech that contains more than one language．It is a common phenomenon in multilingual communities．

2．1 The SEAME Corpus［D．C．Lyu et al．，2011］

SEAME＝South East Asia Mandarin－English
－Conversational Mandarin－English Code－Switch speech corpus
－Temporarily provided as part of a joint research project by NTU and KIT
－About 63 hours of audio data and their transcriptions
－Four language categories：English，Mandarin，particles（Singapourean and Malaysian discourse particles）and others（other languages）
－Average number of CS per utterance：2．6；very short monolingual segments ＝＞challenging bilingual task

2．2 Code－Switching－Analyses of the Corpus

Prediction of Code－Switches
－Trigger words：

word	frequency	CS－rate
那个（that）	5261	53.43%
我的（my）	1236	52.35%
那些（those）	1329	49.44%
一个（a）	2524	49.05%
他的（his）	1024	47.75%

Mandarin trigger words

word	frequency	CS－rate
then	6183	56.25%
think	1103	37.62%
but	2211	36.23%
so	2218	35.80%
okay	1044	34.87%

English trigger words
－Trigger POS：

Tag	meaning	frequency	CS－rate	
DT	determiner	11276	40.44%	
DEG	associative 的	4395	36.91%	Mandarin
VC	是	6183	25.85%	trigger POS
DEC	的 in a relative－clause	5763	23.86%	
M	measure word	2612	23.35%	
Tag	meaning	frequency	CS－rate	
NN	noun	49060	49.07%	
NNS	noun（plural）	4613	40.82%	English
RB	adverb	21096	31.84%	trigger POS
JJ	adjective	10856	26.48%	
CC	coordinating conjunction	4400	24.05%	

3．Recurrent Neural Network Language Model（RNNLM）for Code－Switching

－Input：
－Word vector $\mathrm{w}(\mathrm{t})$
－Feature vector $f(t)$ containing POS tags
－Hidden Layer：Vector $s(t)$ containing the state of the networl
－Output：
－Vector $c(t)$ with the probabilities for each language
－Vector $\mathrm{y}(\mathrm{t})$ with probabilities for each word given its language
－ $\mathrm{U}_{1}, \mathrm{U}_{2}, \mathrm{~V}, \mathrm{~W}$ ：weights for the connections between the layer：
－Training with back－propagation through time（BPTT）
－Computation of the probabilities： $P\left(w_{i} \mid s(t)\right)=P\left(c_{i} \mid s(t)\right) \cdot P\left(w_{i} \mid c_{i}, s(t)\right)$
－Reference to CS task：use words and features to not only determine the next word but also the next language

4．Experiments and Results

Perplexity Evaluation and Rescoring Experiments

－Rescoring of 100－best lists of our CS－ASR system［Vu，2012］with different settings for language model weights（lz）and word insertion penalties（lp）： score $=l z \cdot(\lambda \cdot$ scorernNLM $+(1-\lambda) \cdot$ scorenGRAM $)+\operatorname{score}_{A M}+l p \cdot|w|$
－RNNLM and the 3－gram LM of the ASR system are weighted equally（ $\lambda=0.5$ ）
－Performance Measure：Mixed Error Rate（MER）：word error rates for English segments and character error rates for Mandarin segments

Model	PPL dev	PPL eval	MER dev	MER eval
3－gram	285.87	285.25	35.5%	30.0%
RNNLM	246.60	287.88	35.6%	29.3%
RNNLM＋OF	239.64	269.71	34.9%	29.4%
RNNLM＋FI	233.50	268.05	34.8%	29.3%
RNNLM＋FI＋OF	219.85	$\mathbf{2 3 9 . 2 1}$	$\mathbf{3 4 . 7} \%$	$\mathbf{2 9 . 2} \%$

（OF：output factorization，FI：feature integration）

