

1. Overview

Goal

Prediction of Code Switches based on textual features (words and POS tags) Extended structure of recurrent neural networks for Code-Switching => 10.8 % (2 %) relative improvement in terms of perplexity (WER) on the SEAME development set and 16.9 % (2.7 %) relative on the evaluation set

What is Code-Switching (CS)?

Code-Switching speech is defined as speech that contains more than one language. It is a common phenomenon in multilingual communities.

2.1 The SEAME Corpus [D.C. Lyu et al., 2011]

SEAME = South East Asia Mandarin-English

- Conversational Mandarin-English Code-Switch speech corpus
- Temporarily provided as part of a joint research project by NTU and KIT
- About 63 hours of audio data and their transcriptions
- Four language categories: English, Mandarin, particles (Singapourean and Malaysian discourse particles) and others (other languages)
- Average number of CS per utterance: 2.6; very short monolingual segments => challenging bilingual task

3. Recurrent Neural Network Language Model (RNNLM) for Code-Switching

- Input:
 - Word vector w(t)
 - Feature vector f(t) containing POS tags
- Hidden Layer: Vector s(t) containing the state of the networl Output:
 - Vector c(t) with the probabilities for each language
 - Vector y(t) with probabilities for
 - each word given its language
- U_1, U_2, V, W : weights for the connections between the layer:
- Training with back-propagation through time (BPTT) Computation of the probabilities:
- $P(w_i \mid s(t)) = P(c_i \mid s(t)) \cdot P(w_i \mid c_i, s(t))$
- Reference to CS task: use words and features to not only determine the next word but also the **next language**

RECURRENT NEURAL NETWORK LANGUAGE MODELING FOR CODE-SWITCHING CONVERSATIONAL SPEECH

Heike Adel, Ngoc Thang Vu Franziska Kraus, Tim Schlippe, Haizhou Li, Tanja Schultz heike.adel@student.kit.edu, thang.vu@kit.edu

2.2 Code-Switching-Analyses of the Corpus

Prediction of Code-Switches

Trigger words:

word	frequency
那个(that)	5261
我的(my)	1236
那些(those)	1329
一个(a)	2524
他的(his)	1024

Mandarin trigger words

word	frequency
then	6183
think	1103
but	2211
SO	2218
okay	1044
- I· I . ·	I I

English trigger words

ICASSP 2013

4. Experiments and Results

Perplexity Evaluation and Rescoring Experiments

Rescoring of 100-best lists of our CS-ASR system [Vu, 2012] with different settings for language model weights (Iz) and word insertion penalties (Ip): $score = lz \cdot (\lambda \cdot score_{RNNLM} + (1 - \lambda) \cdot score_{NGRAM}) + score_{AM} + lp \cdot |w|$ • RNNLM and the 3-gram LM of the ASR system are weighted equally ($\lambda = 0.5$) Performance Measure: Mixed Error Rate (MER): word error rates for English segments and character error rates for Mandarin segments

Model	PPL dev	PPL eval	MER dev	MER eval
3-gram	285.87	285.25	35.5 %	30.0 %
RNNLM	246.60	287.88	35.6 %	29.3 %
RNNLM + OF	239.64	269.71	34.9 %	29.4 %
RNNLM + FI	233.50	268.05	34.8 %	29.3 %
RNNLM + FI + OF	219.85	239.21	34.7 %	29.2 %

(OF: output factorization, FI: feature integration)

