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Motivation (1) =SL

stems

® Broadcast news mostly contain the latest
developments

® new words emerge frequently and different topics get
into the focus of attention

® To adapt automatic speech recognition (ASR) for
broadcast news

® update language model (LM) and pronunciation
dictionary
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Motivation (2) =SL

® Using paradigms from Web 2.0 (Oreilly, 2007) to

obtain time- and topic relevant data

B Internet community provides more appropriate texts
concerning the latest news faster than on the static web
pages

B Texts from older news that do not fit the topic of the
show in question can be left out

® Examples:
® Social networking sites
® Blogs
® Web applications
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Introduction (1) C;SL

nitive Systems Lab

B RSS Feeds

® Small automatically generated XML files containing time-
stamped URLs of the published updates

® Can easily be found on almost all online news websites
® Possibility to get data fitting to a certain time interval

B Twitter

® Enables its users to send and read text-based messages
of up to 140 characters (Tweets)

B Tweets more real-time than traditional websites and a
large amount of text data available

® Restriction: Not possible to get Tweets that are older than
6-8 days with Twitter REST API
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Introduction (2) cmSL

nitive Systems Lab

® Researchers have used WWW as an additional
source of training data for language modeling

B |nitial works to use Tweets and RSS Feed services
(Feng and Renger, 2012) (Martins, 2008)

® Our contribution

B Strategy to enrich the pronunciation dictionary and
improve LM with time- and topic-relevant text thereby
using state-of-the art techniques

® Modules for this strategy are provided in our Rapid
Language Adaptation Toolkit (RLAT) (vu et al., 2010)
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Text Collection and Decoding Strategy (1)
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Text Collection and Decoding Strategy (2) =9\

Cogpnitive Systems Lab
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Text Collection and Decoding Strategy (3) =9\
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Text Collection and Decoding Strategy (4)
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Text Collection and Decoding Strategy (5) :SL

RSS feeds

RSS feeds related web
pages

* rss-text-LM and twitter-text-LM are interpolated
with our generic baseline LM (base-LM)

 To determine optimal interpolation weights, the
current show is decoded in a 1st pass with base-LM

* Then the combination of weights is used that
reduces most the perplexity (PPL) on the 1st
pass hypothesis

* Then: 2nd pass decoding with combined LM

Adapted Frequency
vocabulary ‘-— based — R:'::;m Normalized
texts

and dictionary selection
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Corpora and Baseline LMs (1) SU

Cognitive Systems

® Radio broadcasts of the 7 a.m. news from Europe 1

® Each show 10-15 minutes (French)

B rss-text-LM experiments evaluated on 10 shows
B 691 sentences with 22.5k running words spoken

B twitter-text-LM experiments evaluated on 5 shows
B 328 sentences with 10.8k running words spoken

B Subscribed the RSS Feeds services of Le Parisien,
Le Monde, France24, Le Point
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Corpora and Baseline LMs (2) :SL

stems

B Strategy analyzed with 2 different baseline
3-gram LMs of different quality (base-LM)

® GP-LM: French LM from the GlobalPhone corpus
® Q-LM: French LM that we used in the Quaero project

GlobalPhone (G-LM) | Quaero (Q-LM)
O PPL 734 205
O OOV rate (%) 14.18 1.65
Vocabulary size 22k 170k

Quality of our baseline language models on the reference transcriptions
of all 10 news shows
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Experiments —SL

Cognitive Systems Lab

B ASR system

® Acoustic model of our KIT Quaero 2010 French Speech-
to-Text System (Lamel et al., 2011)

B Before vocabulary adaptation: KIT Quaero pronunciation
dictionary (24 7k dictionary entries for 170k words)

70

HQ-LM GP-LM
60
50
40 Word error rates (WERS) (%)
30 of our baseline systems
20
10 I I ->Q-LM: 27.45%
0 > GP-LM: 54.48%
N, N N, N, N N \ Vv £V \v
Yoo A Al @ Y WY o
\’\' \’\'\9 f\,\q’ q’\'&b Q,\’L ‘Q’\q’ '\\Nq’ \\' q{\'&c’ q’\q?’

14  28-August-2013 Unsupervised Language Model Adaptation for Automatic Speech Recognition of Broadcast News Using Web 2.0 N(IT

Karisruhe Institute of Technology



Experiments — Data from RSS Feeds (1) :SL

® From which period is rss-text optimal?
B Analyze rss-text from different periods
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WERs (%) of all shows with LMs containing RSS Feeds-
based text data from different periods
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Experiments — Data from RSS Feeds (2) :SL

B Is rss-text really more relevant than other text?
B ... of the same amount (d 385k lines (for each show))?
B ... of alarger amount (e.g. 20M lines)?

28
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26
25.5
25
24.5

24
+RSS +random +random
Text Text
(#385k (20M
Lines) random
lines)

WER (%) with LMs containing RSS Feeds-related
text compared to random text data
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Experiments — Data from Twitter :SL

® From rss-text, extract topic words based on TF-IDF

® With topic words, search relevant French Tweets
with the Twitter API (in the period from 5 days
before to the date of the show)

B J38k lines for each show

Q-LM | GP-LM

Adding rss-text 1.59 14.77
Adding twitter-text 1.53 [.51 p

Relative WER improvement for the last 5 shows
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Experiments — Vocabulary Adaptation :SL
B Best strategy with GP-LM.

® Include daily on average 19k most frequent words from
rss-text and twitter-text

OOV rate: 13.5% =2 3%
WER: 44.22% > 36.08% (18.41% relative)

W Best strategy with Q-LM:
® Remove words with the lowest probability = 120k

® Include daily on average 1k most frequent words from
rss-text and twitter-text

OOV rate: 1.2% - 0.3%,
WER: 24.40% > 24.38% (0.08% relative)
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Overview =S4

Q-LM | GP-LM

Adding rss-text 1.59 14.77

Adding rwitter-text 1.53 1.51

Vocabulary adaptation based on

rss-text+iwitter-text 0.08 18.41

Adding names of news anchors 0.66 0.39

Total WER rate improvement 3.81 31.78

Relative WER improvement

B GP-LM: 52.68 - 35.94
D QLM: 2518 > 2422
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Conclusion and Future Work —SL

® We proposed an automatic strategy to adapt
generic LMs and the search vocabulary to the
several topics for ASR

B Showed relevance of RSS Feeds and Tweets
® Embedded modules for the strategy into RLAT

® Future work may include further paradigms from
Web 2.0 such as social networks or Web 3.0
(Semantic Web) to obtain time- and topic-relevant
text data
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