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Abstract

In this paper we propose efficient methods which contribute to
a rapid and economic semi-automatic pronunciation dictionary
development and evaluate them on English, German, Spanish,
Vietnamese, Swahili, and Haitian Creole. First we determine
optimal strategies for the word selection and the period for the
grapheme-to-phoneme model retraining. In addition to the tra-
ditional concatenation of single phonemes most commonly as-
sociated with each grapheme, we show that web-derived pro-
nunciations and cross-ligual grapheme-to-phoneme models can
help to reduce the initial editing effort. Furthermore we show
that our phoneme-level combination of the output of multi-
ple grapheme-to-phoneme converters reduces the editing effort
more than the best single converters. Totally, we report on av-
erage 15% relative editing effort reduction with our phoneme-
level combination compared to conventional methods. An ad-
ditional reduction of 6% relative was possible by including ini-
tial pronunciations from Wiktionary for English, German, and
Spanish.

Index Terms: semi-automatic pronunciation generation, pro-
nunciation modeling, web-derived pronunciations, phoneme-
level combination

1. Introduction

From some 7,100 languages all over the world, only a small
fraction of economically relevant languages are covered by
data resources needed for speech technologies like Automatic
Speech Recognition (ASR) and Text-to-Speech (TTS) systems.
These resources include text corpora, transcribed speech data
and pronunciation dictionaries. The latter provide a mapping
from the written form of a word to its pronunciation, typi-
cally expressed as a sequence of phonemes. Automatic methods
for grapheme-to-phoneme (G2P) conversion being able to infer
pronunciations are of great help in the process of generating dic-
tionaries. Since these methods need knowledge about the target
language either in the form of pronunciation rules or as sample
dictionary entries, they are not applicable to bootstrap dictionar-
ies for languages where such data is not available or too expen-
sive to generate. However, they help in semi-automatic strate-
gies where the generated pronunciation hypotheses are manu-
ally checked and corrected by humans [1, 2, 3, 4].

In this paper we present the following contributions to the
rapid and economic semi-automatic dictionary development:
For an efficient semi-automatic pronunciation generation pro-
cess, the G2P model has to be updated regularly. We evaluate
different intervals for these updates and propose an optimiza-
tion. Common approaches utilize one G2P conversion tool of
their choice. We combine the output of different converters to
improve the accuracy of the created hypotheses and thus further
lower the editing effort. Usually the bootstrapping process is

started with an empty dictionary or a set of manually created
word-pronunciation (W-P) pairs. In our strategy we integrate
additional pronunciations to reduce the initial editing effort:
Pronunciations created by the concatenation of single phonemes
most commonly associated with each grapheme (1:1 G2P map-
ping), web-derived pronunciations (WDP) and pronunciations
derived from G2P models of other languages (cross-lingual).
Our Rapid Language Adaptation Toolkit' (RLAT [5]) is a freely
available online service to reduce the amount of time and ef-
fort involved in building speech processing systems for new do-
mains and languages. We included our pronunciation genera-
tion strategy into RLAT.

2. Related work

In semi-automatic dictionary generation processes like [1],
[2], and [3] native speakers enter pronunciations as phoneme
strings. To reduce the difficulty of pronunciation generation,
the user can listen to a synthesized wavefile of the entered pro-
nunciation. Like [3], we present a list of available phonemes to
the users, automatically reject pronunciations containing invalid
phoneme labels and enable the user to listen to a synthesized
wavefile of the pronunciation.

[1] and [2] display the words according to their occurrence
frequencies in a text corpus. By covering common words early,
word error rates (WERs) in ASR are minimized for an early
ASR training and decoding. [4] and [6] order the words accord-
ing to their n-gram coverage to learn many G2P relations early.
[7] and [8] prefer short words over longer words to alleviate
the correction effort for human editors. We follow the prin-
ciples of [4] and [6] and additionally prefer short words over
longer words like [7] and [8]. While [2] use a phoneme set
defined by linguists, [4] infers a phoneme set in an automatic
way: An initial phoneme recognizer is trained on a grapheme-
based dictionary. Based on audio recordings and transcrip-
tions, acoustic model units are adapted based on Merge&Split.
In [3] and in our approach no additional audio recordings are
required since users manually specify the phonemes from an In-
ternational Phoneme Alphabet (IPA) chart, guided by language-
independent audio recordings of each phone.

Some approaches update the G2P model after each word [2,
3]. Others combine incremental updates and periodic rebuild-
ing [4, 9]. In [1] and [10], the user decides about the creation
of new G2P models. [9] introduce a data-adaptive strategy,
updating the G2P model after the pronunciations of 50 words
needed to be corrected. While [2] start with an empty dictio-
nary, [1] manually generate pronunciations for the most fre-
quent 200-500 words in a text corpus. [3] initializes the pro-
nunciation generation with a /:1 G2P mapping entered by the
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user. [4] records 20 minutes of speech and builds an initial dic-
tionary automatically based on the grapheme-based phoneme
set, acoustic information and their transcriptions. Since web-
derived pronunciations proved to be helpful for the dictionary
generation process [11, 12], we used them to obtain initial train-
ing data. While conventional approaches use only one G2P
converter, we use multiple G2P converters with similar perfor-
mances and combine their outputs [13].

G2P models
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Figure 1: Semi-Automatic Pronunciation Generation Strategy.

3. Semi-automatic pronunciation
generation strategy

Fig. 1 illustrates our strategy. The components where our meth-
ods deviate from state-of-the-art are highlighted. Starting with
an empty dictionary, our process consists of the following steps:

1. Initial W-P pairs are used to train an initial G2P model @

2. The next word is determined.

3. Each G2P converter generates a hypothesis for the pronuncia-
tion of that word @

4. The hypotheses are combined at a phoneme level combination
@, which produces one hypothesis to be presented to the user.

5. Optionally, the 1st-best hypotheses of the each G2P converter
are additionally offered to the user.

6. The user edits the best-matching hypothesis to the correct pro-
nunciation for the requested word.

7. Word and corrected pronunciation are added to the dictionary.

8. After a certain number of words , the G2P converters update
their G2P models based on the W-P pairs in the dictionary.

4. Experimental setup
4.1. Languages and reference dictionaries

Since our methods should work for languages with different
grade of regularity in G2P relationship, our experiments are
conducted with German (de), English (en), Spanish (es), Viet-
namese [14] (vi), Swahili (sw), and Haitian Creole (hf). For
evaluating our G2P conversion methods, we use GlobalPhone
dictionaries [15] for de, es and sw as reference since they have
been successfully used in LVCSR [16]. The en dictionary is
based on the CMU dictionary®. For ht, we employ a dictionary
also developed at CMU. All dictionaries contain words from the
broadcast news domain. We created six random excerpts of 10k
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words from each dictionary to conduct all experiments in a 6-
fold cross-validation, except for vi as the Vietnamese dictionary
contains only 6.5 k word-pronunciation pairs.

4.2. G2P converters

We use four G2P converters for our experiments: Sequitur
G2P [17], Phonetisaurus [18, 19], Default&Refine [20, 21, 22]
and CART trees [23]. For all G2P converters, we use context
and tuning parameters that result for all six tested languages in
an optimal tradeoff between performance and CPU time for the
G2P model training.

4.3. Evaluation metrics

As it is very expensive to assess real human editing times,
we simulate the annotation process assuming that the editor
changes the displayed phoneme sequence to the phoneme se-
quence of the reference pronunciation. To measure the human
editing effort, we introduce the cumulated phoneme error rate
(cPER) as follows:

> sub(wi) + ins(w;) + del(w;)
>, phonemes(w;)

c¢cPER(n) :== (1)

We accumulate the number of edits (substitution, insertion
or deletion of single phonemes) a developer would have done
up to the current word w,, to reach the pronunciations of our
reference dictionaries and set these edits in relation to the to-
tal number of phonemes seen in the dictionary. This value is
the counterpart to the phoneme correctness in [22]. As the val-
ues contain the initialization phase with bad hypotheses, reading
these numbers as PER which reflects only the editing effort for
the current word w,, would be misleading. According to [7],
we assume a human dictionary developer to take 3.9 seconds on
average for an edit to a predicted hypothesis.

5. Experiments and results
5.1. Word selection strategy

Based on [4] and [6], our word list is sorted by graphemic 3-
gram coverage and based on [8] with a preference for short
words (ngram sorted) to speed up the annotation process.
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Figure 2: Word selection strategies, evaluated on 10k English
W-P pairs with Phonetisaurus.

Fig. 2 shows that our proposed strategy outperforms a ran-
dom order slightly in cPER for English dictionary extracts. Like
[6], we plot an alphabetical selection for comparison. The im-
pact of ngram sorted is higher in the beginning of the process,
when less training data for the G2P models are given. In all
three curves we updated the G2P model according to logistic
growing intervals which we describe in Sec. 5.2. ngram sorted
outperforms random and alphabetical for the other languages
as well.



5.2. Iterative G2P model building

The more frequent G2P models are re-created based on the in-
cremental pool of W-P pairs, the better the quality of the gen-
erated pronunciations which reduces the human editing effort.
However, frequent G2P model generation results in a notable in-
crease in CPU time. For example, the slowest G2P converters in
our selection take approximately one hour for a G2P model re-
training pass of 10k en W-P pairs on a computer equipped with
a 2.6GHz AMD Opteron processor. Since parallel or incremen-
tal G2P model training is for some of the methods not possible,
our goal is to train G2P models more frequently in the begin-
ning when it does not take much time and G2P model quality
still increases rapidly with more training data. [9] proposes a
data-adaptive training interval (Adaptive). In a first phase they
re-train their G2P model after each added word. When the dic-
tionary reaches a size of 1,500 words, they switch to the second
phase where the G2P model is re-created after 50 predicted pro-
nunciations needed corrections. We compared Adaptive to a re-
training at a fixed dictionary growth (Fixed) and linearly grow-
ing intervals (Linear) with different parameter values. 10 % dic-
tionary growth proved to be a sensible value for Linear with
better results in less time than Fixed. However, Linear exhibits
the disadvantage of a boundless increase of the training inter-
vals for large dictionaries. To ensure a maximum size for the
interval, we propose a logistic growth function (Logistic). This
function starts with training interval 1 after word 1 and enables
a smooth increase from 0 to 10k words where we observed a
notable slowdown in G2P model improvement even for the lan-
guages with a high complexity in the G2P relation. In our case
we limit the maximum training interval to 3k words.

Interval ‘ sum  edittime CPUtime Y Time
Logistic 22,983 89,634 s 2,055s 91,689 s
Linear 22,657 88,3625 3,282 91,644
Adaptive | 22,530  87,867s 28,928s 116,795
Fixed 23,658 92,266 17,529s 109,795

Table 1: Strategies for G2P model retraining.

Tab. 1 shows the raw editing time it would take a human
supported by Phonetisaurus to generate the dictionaries of all
six languages plus the CPU time consumed (average in the
6-fold cross-validation without parallelization on a computer
equipped with a 2.6GHz AMD Opteron processor and 32GByte
RAM). Since Phonetisaurus is by far the fastest of our G2P con-
verters, the training interval is more crucial for the other con-
verters. Even though Logistic only consumes 60 % of the CPU
time of Linear and 7 % of the CPU time of Adaptive, the edit-
ing effort results are comparable to the best-performing Adap-
tive and Linear. Thus we decided to continue our experiments
with Logistic. In a real human scenario, the user can addition-
ally start the G2P model generation process manually before an
extended break.

5.3. Combination of G2P converter outputs

Tab. 2 lists the editing effort in terms of cPER to generate pro-
nunciations for 10k words with Logistic. Sequitur performs
best in three of six cases, closely followed by Phonetisaurus.
Phonetisaurus, Default&Refine (D&R) and CART tree perform
best in one case each. While the exact recall and rule system of
D&R and CART tree seem to be better suited for languages with
a regular G2P relation, the statistical approach with smoothing
seems to be better for languages with less regular pronuncia-
tions. The best single G2P converter for each language provides

our baseline to which we compare all improvements. For the
phoneme-level combination (PLC) [13], we apply nbest-lattice
at the phoneme-level which is part of the SRI Language Mod-
eling Toolkit [24]. From each G2P converter we select the most
likely output phoneme sequence (1st-best hypothesis). Then we
use nbest-lattice to construct a phoneme lattice from all convert-
ers’ 1st-best hypotheses and extract the path with the lowest ex-
pected PER. Since we observed that the order of pronunciations
is of great importance for the results, we ordered the 1st-best
hypotheses according to the average performance of the differ-
ent G2P converters in our baseline scenario: Sequitur, Phoneti-
saurus, D&R, CART tree. As demonstrated in Tab. 2, PLC leads
to a statistically significant reduction in cPERs (APLC) for all
languages between 1.9 % and 38.1 % relative.

en de es vi SW ht

Sequitur 1524 11.02 219 4.83 0.25 0.39
Phonetis. | 15.28 11.10  2.28 4.42 0.21 0.43

D&R 16.80 12.85 2.23 5.12 0.21 0.42
CART 20.01  13.89 2.56 5.20 0.26 0.36
PLC 14.47 10.81  2.00 3.78 0.13 0.28

APLC 5.05 191 8.68 1448 3810 2222

Table 2: cPERs (%) for single G2P converters, 10k dictionaries

5.4. Resources for initial pronunciations

In addition to the traditional substitution of graphemes with the
most commonly assossiated phonemes (/:1 G2P Mapping), we
show that G2P models from web data and from other languages
can help to reduce the initial human editing effort.

en de es vi SW ht
PER 1:1 50.01 37.83 1420 4049 10.52 1492
Optim. x-over 100 170 360 80 230 120
PER Wikt 32,55 1347 1140

Optim. x-over 210 4,750 230

PER x-lingual | 50.42  46.64
Optim. x-over 42 52

Table 3: PER (%) and optimal cross-over for initial prons.

5.4.1. 1:1 G2P mapping

As in [3], we created initial pronunciations with /:/ G2P Map-
ping. This mapping can be compiled by a native speaker but
also derived from existing W-P pairs, e.g. from the Web. How
close the pronunciations with the /:1 G2P Mapping come to
our validated reference pronunciations in terms of PER is illus-
trated in Tab. 3. Including the pronunciations generated with
the 1:1 G2P Mapping in the PLC with the single G2P converter
outputs helps to reduce the cPER for the first 100 en words, the
first 170 de words, the first 360 es words, the first 80 vi words,
the first 230 sw words, and the first 120 ht words (Optim. x-
over). Using the pronunciations from the /:1 G2P Mapping
after these crossovers reduces the pronunciation quality in the
PLC. Therefore in our strategy we use the pronunciations from
the /:1 G2P Mapping in the first place in the PLC up to the av-
erage crossover of all tested languages at 180 words and omit
them afterwards. Despite the high PERs in the pronunciations
from the /:1 G2P Mapping, we obtain on average a relative
cPER reduction of 3% on top of the PLC as shown in Tab. 4.

5.4.2. Web-driven G2P converters’ output

Since web-derived pronunciations (WDPs) proved to support
the dictionary generation process [11, 12, 13, 25], we investi-
gated if they can be used to obtain initial training data for our
G2P converters and outperform the conventional /:1 G2P Map-
ping. For our analysis we used Sequitur to build additional G2P



en de es vi SW ht average
Best single G2P 1524 (9,662)  11.02 (10,051) 2.19(1,805) 4.42(841) 0.21(191) 0.36 (220)
PLC 14.47 (9,168) 10.81 (9,858)  2.00(1,647) 3.78(718) 0.13(118)  0.28 (168)
Relative to single 5.05°% 1.91° 8.68° 14.48° 38.10° 22.22% +15.07
1:1 G2P mapping + PLC | 14.45 (9,156) 10.81 (9,860) 1.97 (1,623) 3.73(710) 0.12(106)  0.26 (155)
Relative to PLC 0.14 0.00 1.50 1.32¢ 7.69° 7.14° +2.97
WDP + PLC 13.64 (8,645) 10.22 (9,327) 1.87 (1,542)
Relative to PLC 5.74% 5.46° 6.50° +5.90
Cross-lingual + PLC 14.42 (9,139) 10.87 (9,916)
Relative to PLC 0.34 -0.56 -0.11

Table 4: Reductions in cPER (%) and total number of human edits — * marks results with statistical significance.

converters for en, de and es with W-P pairs from Wiktionary’.
How the WDPs approach our reference pronunciations in terms
of PER is illustrated in Tab. 3. Including the WDPs in the PLC
benefited for the first 210 en words, the first 4,750 de words, and
the first 230 es words (Optim. x-over). Instead of omitting them,
we gained more cPER reduction by putting the WDPs from the
first to the last position in the PLC after the average crossover
of all tested languages at 500 words. As demonstrated in Tab. 4,
using the web-driven G2P converters’ output to reduce the ini-
tial effort performed better than the /:7 G2P Mapping with a
relative improvement in cPER of 6% compared to the PLC. Ap-
plying our automatic filtering methods which had further im-
proved the quality of web-driven G2P converters in [26] and
[27] did not lower the cPER. The reason is that the filtering
skips irregular pronunciations from the input which have sup-
plied valuable additional information to the PLC.

5.4.3. Cross-lingual pronunciations

In [28] we have shown that using G2P models derived from
existing dictionaries of other languages can severely reduce the
necessary manual effort in the dictionary production, even more
than with the /:1 G2P Mapping. According to the cross-lingual
dictionary generation strategy in [28], we (1) mapped the target
language graphemes to the graphemes of the related language,
(2) applied a G2P model of the related language to the mapped
target language words, and (3) mapped the resulting phonemes
of the related language to the target language phonemes. With
this strategy, we generated en pronunciations with a de G2P
model and de pronunciations with an en G2P model. How close
the cross-lingual pronunciations come to our reference pronun-
ciations in terms of PER is illustrated in Tab. 3. Including the
cross-lingual pronunciations in the PLC with the single G2P
converter outputs helped slightly for the first 42 en words and
the first 52 de words (Optim. x-over). Therefore in our strat-
egy we use those pronunciations in the first place in the PLC
up to the average crossover of all tested languages at 45 words
and omit them afterwards. While we observe a small relative
cPER reduction of 0.34% on top of the PLC for en, we ob-
tain a relative increase of 0.56% for de as shown in Tab. 4.
However, Fig. 3 demonstrates that cross-lingual outperforms
1:1 G2P Mapping in the beginning of the process, when less
training data for the G2P models are available.

6. Conclusion and future Work

We have proposed efficient methods for rapid and economic
semi-automatic dictionary development and evaluated them on
languages with different G2P relation complexity. We measured
the human editing effort with the cPER, setting the number of
edits done by a developer up to the current word in relation to
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Figure 3: Overview of the English results.

the total number of reference phonemes. Tab. 4 summarizes the
cPERs and the necessary edits for 10k en, de, es, sw, and ht and
6.5k vi words. While for the languages with a strong G2P re-
lationship only a few hundred edits are required for all words,
and for Spanish between 1.5k and 1.8k, we observe almost 10k
required edits for de and en. In Fig. 3 we have plotted the cPER
reduction over the number of processed pronunciations for en,
the language with the highest G2P complexity. Our word selec-
tion strategy ngram sorted outperforms random. Updating the
G2P model according to logistic growing intervals enables be-
tween 7% and 60% CPU time savings with performances com-
parable to other approaches. Our PLC of the output of multiple
G2P converters reduces the editing effort by on average 15%
relative to the best single converter, even 38% for sw. The tra-
ditional /:1 G2P Mapping helps de and en with complexer G2P
relationships only slightly to reduce the editing effort. cross-
lingual only outperforms /:/ G2P Mapping in the beginning
of the process, when less training data for the G2P models are
available. However, we recommend to use WDPs on top of
PLC if available, since they give us consistent improvements
for different vocabulary sizes in the whole process and on aver-
age 6% relative for 10k words. Our new RLAT function which
is publicly available allows to bootstrap a dictionary with the
proposed methods supported with the possibility to listen to a
synthesized wavefile of the pronunciation. Future work may in-
clude to analyze our strategy in a crowdsourcing scenario and
for other languages. Furthermore, our word selection strategy
may be further improved with active learning techniques [29].
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