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Abstract
We introduce BioKIT, a new Hidden Markov Model based
toolkit to preprocess, model and interpret biosignals such as
speech, motion, muscle and brain activities. The focus of this
toolkit is to enable researchers from various communities to
pursue their experiments and integrate real-time biosignal in-
terpretation into their applications. BioKIT boosts a flexible
two-layer structure with a modular C++ core that interfaces
with a Python scripting layer, to facilitate development of new
applications. BioKIT employs sequence-level parallelization
and memory sharing across threads. Additionally, a fully in-
tegrated error blaming component facilitates in-depth analysis.
A generic terminology keeps the barrier to entry for researchers
from multiple fields to a minimum. We describe our online-
capable dynamic decoder and report on initial experiments on
three different tasks. The presented speech recognition experi-
ments employ Kaldi [1] trained deep neural networks with the
results set in relation to the real time factor needed to obtain
them.
Index Terms: biosignal processing, toolkit, dynamic decoder,
speech recognition

1. Introduction
In many fields of research, relevant information in sensor data
can be modeled by sequences of atomic states using the statis-
tical principles of Hidden Markov Models (HMMs). Decoding
an input signal stream, i.e. finding such sequences in time se-
ries, is a key pattern recognition approach that is relevant for
numerous applications.

Structural information, as used in automatic speech recog-
nition (ASR) in form of statistical language models, can add
information and help to restrict the search space for efficient
decoding. Over the last 35 years, a massive effort of the au-
tomatic speech processing community has pioneered HMM-
based modeling and decoding, which led to effective and ef-
ficient algorithms. Yet, this technology is not easily accessible
for researchers from other disciplines, as the available tools in-
clude specific optimizations and require researchers to transfer
their concepts to those of the toolkit’s original target commu-
nity. The lack of a toolkit that met all of our requirements led to
the development of BioKIT, which is designed, implemented,
and used by our interdisciplinary team of researchers from the
fields of speech, electrophysiology, and motion recognition. It
has been developed to fulfill the demands of different research
areas by complying with the following key requirements.

• Flexible processing and modeling of various types of
signals, such as multi-channel bio-physiological sig-
nals, high-resolution frequency based speech signals,

and low-resolution time-based signals like accelerome-
ter signals: All processing modules should have generic
interfaces that allow flexible use within arbitrary pro-
cessing chains for state-of-the-art decoding. Model as-
sumptions should be minimal, e.g. flexible HMM archi-
tectures should be supported, including multiple streams,
and hierarchical modeling.

• Fast setup of experiments and flexible code-base: The
efforts of creating a new recognition setup and perform-
ing experiments should be small. Code should be de-
signed in a modular fashion making it easy to combine
and replace features or change behavior of existing al-
gorithms. This should be possible during run-time and,
in particular, without the necessity of recompiling and
linking the complete code-base.

• Processing of big amounts of data: Sizes of data sets
for ASR and other human-machine interaction applica-
tions, such as wearable computing and activity recogni-
tion, are increasing. Therefore, the toolkit should be able
to handle massive amounts of data with correspondingly
big models. Furthermore, parallelization which means
utilizing clusters and multi-core machines efficiently (i.e.
share memory across threads) is a requirement.

• Online-capability: The decoder needs to process a con-
tinuous data stream in real-time by chunk-wise decoding
and outputting of intermediate results.

• Error analysis: During research it is important to ana-
lyze recognition errors to identify the responsible system
components [2, 3] and room for improvements.

• Accessibility: The terminology used in the toolkit
should be sufficiently generic to appeal to a wide audi-
ence.

1.1. Related work

There are a number of toolkits which focus mostly on ASR,
e.g. the HTK toolkit [4], Sphinx-4 [5], Julius [6], and more
recently the Kaldi toolkit [1]. A toolkit with a broader focus
is the RWTH Aachen toolkit [7]. The Georgia Tech Gesture
Toolkit [8] extends HTK to simplify the process of building
HMM-based gesture recognizers. Notable frameworks which
also had an impact on the development of BioKIT are the Janus
Recognition Toolkit [9, 10] and the Attila toolkit [11].

Current toolkits usually offer either dynamic [7, 11] or
static decoders [1]. When focusing on acoustic modeling re-
search, other components are kept constant and the resulting
static network can be reused between experiments [1]. Since all
knowledge sources are integrated into the network, the decoder



is more streamlined than a dynamic decoder. A drawback is that
only language models which can be converted into a finite state
transducer can be used. Additionally, models cannot exceed a
certain size to keep network size in check. Dynamic decoders
offer more flexibility for language modeling at the expense of
more complicated decoders [11]. BioKIT, like Sphinx-4 [5],
is a dynamic decoder implementing a token passing algorithm
which is described further in Section 3.4. We use a two-layer
design [11] and additionally allow users to integrate their own
components (such as preprocessing modules) on the fly. This
is particularly useful for working with EEG/EMG signals (see
Section 2). Building on the work of Chase and Nanjo et al.
[2, 3], we directly integrated an error blaming component into
BioKIT providing analysis at the state level. Other than the
above toolkits, BioKIT allows to order the HMMs in hierarchies
and perform a decoding on this hierarchical structure (refer to
Section 2.2).

1.2. Terminology

Our terminology abstracts from the specific terminology to ap-
peal to a wide audience in biosignal research. The smallest
meaningful unit in our system is an Atom, representing a sin-
gle HMM. A Token is a sequence of one or more Atoms, which
also compose BioKIT’s final recognition results. In the sim-
plest case, one Token consists of one Atom which equates to
modeling a Token with one distinct HMM. The Dictionary de-
scribes the mapping of Tokens to Atom sequences. The To-
kenSequenceModel models occurrence probabilities of Token
sequences. Emission probabilities of HMM states are computed
by the FeatureVectorScorer.

To relate these terms to the common ASR terminology: A
single Atom corresponds to a phone in speech. A sequence of
Atoms equates to the pronunciation of a Token, i.e. a word. The
TokenSequenceModel conforms to the language model. The
FeatureVectorScorer corresponds to the acoustic model. For an
activity recognition system, Atoms could relate to primitive mo-
tions such as raising an arm or grabbing an object, whereas To-
kens would model meaningful sequences of primitive motions
such as opening a door. The TokenSequenceModel would model
the probabilities of observing certain actions or activities in a
sequence.

2. Biosignals
The following section lists some current research activities
for different biosignals using BioKIT. Each section briefly de-
scribes a signal’s requirements for a decoder and how we meet
them. The term biosignal refers here to signals which are emit-
ted by the human body to control, regulate and transfer in-
formation within the human organism or to interact with its
environment. Biosignals are measured in different sizes de-
pending on the origin, i.e. electrical parameters (potential, cur-
rent, resistance), mechanical quantities (force, pressure, move-
ment), acoustic parameters (language, non-verbal articulations,
body sounds), thermal parameters (temperature, body heat) and
chemical variables (concentration, pH).

2.1. Electrophysiological multi-channel signals

Research on electrophysiological biosignals, such as recorded
electromyography (EMG) and electroencephalography (EEG),
usually involves the processing of high dimensional multi-
channel time series, such as [12]. Typically, small amounts of
data are recorded in settings that differ from experiment to ex-
periment. Therefore, processing pipelines vary from data set to

data set and evaluation scripts can be complex (e.g. including
parameter optimization by nested cross-validations). In addi-
tion to that, research involves careful data screening and statis-
tical analysis.

In BioKIT, researchers can perform user-in-the-loop data
analysis using BioKIT’s interactive Python shell mode, in
which the user can completely control BioKIT, while having
the full support of the Python scripting language for easy signal
processing, analysis and visualization (e.g. using SciPy tools
[13]), as well as debugging.

BioKIT is used for EMG-based Silent Speech Recognition,
where the electrical potentials of a user’s facial muscles are cap-
tured in order to retrace speech. This technology allows to pro-
cess and recognize speech silently, i.e. by articulating speech
without producing an acoustic signal (e.g. when communica-
tion in a quiet place is required or for speech-disabled users).

2.2. Motion

We use BioKIT for human motion recognition in gesture and
activity detection tasks. With Airwriting [14], we propose a
wearable text entry system, in which the user’s hand is used as
a stylus and text can be written in the air. We are also develop-
ing an activity recognition system for an adaptive knee ortho-
sis [15]. The workflow when designing such systems is to first
record data for the Atoms alone and to build and evaluate a sim-
ple multi-class recognizer, where each class relates to one Atom.
In the above cases this means isolated letters or isolated activ-
ity data. In the second step realistic sequence data is obtained
and the models obtained in the first step are used to evaluate
the sequence recognition abilities. BioKIT streamlines this pro-
cess by providing a user friendly front-end to build and evaluate
simple context-independent classifiers with the option to extend
them to the use case of recognizing sequences of patterns. The
complexity of context-dependent modeling as used in ASR is
hidden from the user.

BioKIT also features modeling of Atoms in a hierarchical
manner. A complete activity might entail reaching for a bottle,
grasping for its lid, and then closing the bottle. Getting the
bottle and its lid might appear in arbitrary order but closing the
bottle is an action that requires synchronous manipulation with
both hands. The closing operation can be modeled as one Atom
at the highest level, which means the HMM describes the full
feature space (e.g. joint angles of both arms), whereas getting
the bottle and lid can be modeled at the second hierarchy level,
where the action of each arm is modeled by one Atom. In this
case, the corresponding HMMs only describe the feature space
of one arm. This allows for efficient modeling of asynchronous
movements of different body parts.

2.3. Acoustic speech

The recognition of acoustic speech, compared to the processing
of other biosignals mentioned in this paper, is most concerned
with processing large amounts of data, and complex modeling,
such as Atom context-dependent models. The variability in the
data is reflected in the size of the models, requiring toolkits to
handle these bigger models [11]. To meet these requirements
we parallelize the processing of multiple test sequences utiliz-
ing multi-core machines with threads sharing their data as much
as possible to minimize overall memory usage. We first gener-
ate a prototype configuration of the decoding setup (i.e. loading
the required models and creating the search network) and then
generate copies from the prototype in memory, limiting model
read operations to one. Created copies share thread safe mod-



ules. Thread safety is managed by each component individually.

3. Toolkit overview
BioKIT contains documentation including a tutorial as well as
extensive commentaries within the code to reduce the effort for
new users. A suite of integration and unit tests is included to
verify the implemented algorithms. The following sections dis-
cuss each component.

3.1. Signal preprocessing

The preprocessing is organized in modules which can be freely
combined into preprocessing chains. Each module is able to
process any kind of multi-channel data which we represent as
lists of matrices where each matrix corresponds to a single
channel. Some modules in BioKIT are windowing, spectral
analysis, linear transformation (e.g Linear Discriminant Anal-
ysis or feature-space Maximum Likelihood Linear Regression
(fMLLR) [16]). Common preprocessing modules are imple-
mented in the C++ layer, but new modules can also be imple-
mented directly in Python allowing for rapid prototyping of new
preprocessing modules. As all matrices in the Python layer
are represented as NumPy arrays, the NumPy and SciPy li-
braries [13] can be seamlessly integrated. This offers the whole
range of mature and optimized signal processing algorithms
from these libraries to the user. The preprocessing chains are
implemented in Python, enabling the user to modify and extend
preprocessing operations on the fly. Processing modules can be
reconfigured and exchanged during run-time.

3.2. Scoring feature vectors

The FeatureVectorScorer manages the observation models in
the HMM states and computes the emission probabilities. Fea-
tureVectorScorer can be substituted with any valid implemen-
tation of the scorer interface to compute a score for a given
model identifier and feature vector. We support Gaussian Mix-
ture Models and Quicknet-trained neural networks[17]. In ad-
dition, if a compiled version of Kaldi is found during config-
uration of BioKIT, wrapper classes integrate a range of Kaldi
models [1]. Currently supported adaptation methods are MLLR
[16] and Maximum-A-Posteriori adaptation [18].

3.3. Token sequence modeling

The TokenSequenceModel (TSM) computes the probability of
a Token given a sequence of previous Tokens. An important
reason for us to develop a dynamic decoder is the ability to
use arbitrary knowledge sources for modeling token sequences
(concerning the type of model itself, as well as supporting very
small to very large models). Currently, we support a grammar,
a standard n-gram model in the ARPA format [19], a factored
language model [20], and the possiblity to interpolate between
TokenSequenceModels.

3.4. Decoder
The decoder employs a token passing algorithm on a de-
terminized and minimized search network [21]. Context-
dependent modeling of Atoms, commonly used in ASR (see
Section 2.3), is directly integrated into the network with unlim-
ited context size. The network construction’s only constraint
is to use left-to-right topologies. The search network is a To-
ken-loop with each node handling several hypotheses with dif-
ferent TokenSequenceContexts. A TokenSequenceContext man-
ages the sequence of Tokens already recognized as part of a hy-
pothesis and is used as input for the TokenSequenceModel.

During the decoding all recognized Tokens are compressed
to a graph. This lattice can be used for a subsequent n-best
list generation or rescoring of hypotheses. The decoder is able
to perform a segmentation on the preliminary lattice and return
partial results, making it online capable. A segment boundary is
found if the duration of a filler Token exceeds a given threshold.

Similarly to Soltau et al. [21], we have absolute and relative
pruning parameters limiting the number of hypotheses, active
HMM states in the search network, as well as the number of
HMM states at the end of Tokens. By implementing a TokenSe-
quenceModel lookahead [22], we can integrate any TokenSe-
quenceModel information as soon as possible into the decoding
process. A wrapper class implementing the TokenSequence-
Model interface caches frequent queries employing a least re-
cently used strategy and thus speeds up the search.

3.5. Error blaming
Inspired by the work of Chase [2, 3], we chose to integrate a
semi-automatized error identification component directly into
the toolkit. The error blaming module collects statistics directly
during the decoding, enabling the user to perform the blaming
on a partial hypothesis at the state level rather than on the lat-
tice. The tool blames the different components of the system
along with model confusions. The tool has proven not only
to be helpful for giving feedback on experiments, but also for
finding algorithmic errors during development despite a range
of unit and integration tests.

Reference-Frames: 73 - 85 86 - 103 104 - 147
Hypothesis-Frames: 73 - 85 86 - 103 104 - 147
Reference: with(3) that surge has(2) 
Hypothesis: with(3) that searches 
Scorer-Ref: 758.64 995.68 2799.51
Scorer-Hypo: 758.64 995.68 2725.93
TSM-Ref: 5.06 58.48 179.89
TSM-Hypo: 5.06 58.48 136.58
Error-Category: CORRECT CORRECT SCORER_TSM_ERROR

Figure 1: Partial Error Blaming output with error categories and
scores for FeatureVectorScorer (Scorer) and TokenSequence-
Model (TSM).

Figure 1 shows the partial output of an error blaming pro-
cedure on a single utterance taken from the WSJ0 corpus [23].
The reference and hypothesis are aligned and split into error
regions. Each region is assigned one of several error cate-
gories, with CORRECT stating that there is no error in the
segment. Along with the error category, information on Fea-
tureVectorScorer and TokenSequenceModel scores are given.
The scores are presented as negative logarithmic values. Fig-
ure 1 shows three error regions. In the third region both Fea-
tureVectorScorer and TokenSequenceModel scores favor the er-
roneous hypothesis over the reference. Due to the acoustic sim-
ilarity between ”surge has” and ”searches”, the error could be
fixed by improving the TokenSequenceModel.

4. Experiments
We present the results on three different tasks using BioKIT:
Airwriting recognition, EMG-based speech recognition, and au-
tomatic acoustic speech recognition.

4.1. Emg-based speech recognition
The EMG system consists of a multi-stream setup with 8
(“streams”) [24]. These streams correspond to phonetic fea-
tures such as the place or manner of articulation; furthermore
phonetic feature bundling [24] is performed to model depen-
dencies between phonetic features. Each stream is modeled



with GMMs. On a 108-word vocabulary, we obtain on average
20.88% word error rate on session-dependent systems, where
training and test data were jointly recorded. Experiments were
conducted on the EMG-UKA corpus, the data set contains 12
sessions on 4 speakers [25].

4.2. Airwriting recognition
In airwriting, users write text in the air as they were writing
on a virtual notepad or blackboard. The handwriting motion is
measured by an accelerometer and a gyroscope attached to the
back of the hand. Text is written in uppercase block letters. For
the airwriting task, we use a context independent system with
26 atoms representing the uppercase letters of the latin alpha-
bet [14]. The system is initialized on single letter recordings
and additional training is performed on single word recordings.
On a corpus with 9 subjects, each contributing 80 written sen-
tences, we obtain on average 11% word error rate in a user-
independent setup (leave-one-out cross-validation) with a vo-
cabulary of 8000 words and a 3-gram language model. The
word error rate drops to 3% for the user-dependent case.

4.3. Automatic speech recognition
We report on experimental results conducted with our decoder
and compare the results to Kaldi [1]. Furthermore, we inves-
tigate the real-time factor necessary to obtain them. We chose
Kaldi for our comparison since it offers state-of-the-art acoustic
modeling and performance, and is freely available.

4.3.1. Experimental setup
We report results on the Bulgarian (BG), Czech (CZ), German
(GE), Mandarin (CH), and Vietnamese (VN) part of the Global-
Phone database [26]. Each system is trained on about 22 hours
of read speech with the Kaldi toolkit. We present the results
obtained on deep neural network (DNN) acoustic models from
[27] using an fMLLR adaptation. The fMLLR transforms were
separately created by Kaldi and BioKIT in a first pass by using
Kaldi trained Gaussian Mixture Models. The input for the DNN
is a 143 dimensional feature vector consisting of 11 stacked 13
dimensional MFCC vectors. The DNN is initialized by train-
ing on a range of languages from the GlobalPhone database and
is then re-trained with the target language training data. The
neural network has 5 hidden layers with 1,500 nodes each.

The dictionary sizes and language model (LM) information
are given in Table 1. The number of highest order n-grams
are presented in the table to give an estimate of the size of the
model. The appended ”s” and ”b” indicate small and big lan-
guage models, respectively. The out-of-vocabulary (OOV) rate
for each system is less than 0.01% with the exception of Bul-
garian where we have an OOV of 2.18%. For the experiments
with BioKIT, the full language model lookahead was used for
each system with an unlimited lookahead depth.

In order to limit network size and reduce memory consump-
tion, Kaldi integrates big language models on the fly using the
network build on the small LM. To be able to use DNNs in
conjunction with our big LMs in Kaldi, we adapted the Kaldi
decoder script.

4.3.2. Results
First, we report the error rates of our systems using the Kaldi
and the BioKIT decoder in Table 1. The results for Mandarin
are given in character error rate (CER), Vietnamese in syllable
error rate (SER), and Bulgarian, Czech, and German in word
error rate (WER). The results show that the Kaldi and BioKIT
decoder achieve comparable error rates for all systems. All re-

Table 1: Various systems and their performance with Kaldi and
BioKIT given in WER. Mandarin is given in CER and Viet-
namese in SER. All systems use a 3-gram LM with the exception
of VNb which employs a 5-gram LM.

system words PPL n-grams BioKIT Kaldi
BGs 100k 386 1.7m 12.50% 12.84%
BGb 100k 306 47.3m 11.76% 12.16%
CZs 33k 1,644 4.3m 9.19% 9.23%
CZb 33k 1,469 15.3m 8.73% 8.66%
GEs 37k 673 2.2m 10.89% 10.85%
GEb 37k 552 33.3m 9.50% 9.76%
CH 71k 503 5.0m 17.14% 16.90%
VNs 30k 247 1.7m 8.17% 8.10%
VNb 30k 179 50.6m 6.99% 7.10%

sults were tested for significance. Only results for the systems
BGs, and CH are significant at a significance level of 0.05.

Finally, Figure 2 shows BioKIT’s performance in terms of
real-time factor over syllable error rate on our Vietnamese sys-
tems. The decoding speed of our decoder is not affected by the
bigger language model. The decrease in error rate levels off af-
ter a real-time factor of about 1. Tests were run on an Intel Core
i7-3770 with 3.4GHz and 4 cores. All tests were run with 4
threads in parallel. Real-time factor is derived from the sum of
the decoding times of all 4 threads. For the Vietnamese systems,
the memory consumption for experiments with a single thread
is 1.1GB (VNs) and 2.4GB (VNb). Using our parallelization
with 4 threads, memory consumption increases to 3.3GB (VNs)
and 4.6GB (VNb).
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Figure 2: Real-time factor over SER for GlobalPhone Viet-
namese system with 3-gram LM(VNs) and 5-gram LM(VNb).

5. Conclusion
We introduced our new toolkit BioKIT and gave an overview
of its components. We showed that our toolkit is suitable for
several human-machine interfaces applying a variety of differ-
ent biosignals. We reported on first results of our decoder using
Kaldi trained deep neural networks achieving comparable re-
sults. We showed that usage of large language models has no
negative effect on real-time factor over error rate with BioKIT.
Furthermore, by employing our parallelization strategy of shar-
ing modules between threads, we are able to reduce the memory
requirements significantly. Future plans include extending the
error blaming component by increasing the granularity of error
categories, proposing likely solutions to frequent errors auto-
matically, and enabling automatic tuning of a given decoding
setup.
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