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Abstract

This paper illustrates locality sensitive hasing (LSH) models for the identification
and removal of nearly redundant data in a text dataset. To evaluate the differ-
ent models, we create an artificial dataset for data deduplication using English
Wikipedia articles. Area-Under-Curve (AUC) over 0.9 were observed for most
models, with the best model reaching 0.96. Deduplication enables more effective
model training by preventing the model from learning a distribution that differs
from the real one as a result of the repeated data.

1 Introduction

The introduction of large data sets for deep learning models has had a significant impact on NLP [3, 4]
and ASR [5, 10]. This expansion has created substantial issues for data quality assurance, as
performing manual examination on millions of data points becomes unfeasible.

Duplicate and nearly duplicate data are one of the most significant issues with these collections. The
usage of several data sources can cause the same file to be incorporated into training data sets multiple
times, since data is easily copied on the Internet. The main challenge is not the same exact data,
because there are easy and efficient approaches for detecting and eliminating it (e.g., hashing every
document in the data set to an integer and checking for collisions). The key issue is in detecting data
which is practically the same, though not exactly the same, i.e. examples with few changes, deletions,
or additions of sentences. Data duplication is a critical issue for two reasons:

• Failure to guarantee that no duplicate data exists may result in overfitting in a specific section
of the distribution or an unfair bias in the model [6].

• Removing duplicated data also allows us to partition our data set into train, dev, and test
parts while guaranteeing that they have no data overlap.

2 Related Work

Despite the importance of data deduplication, there is no standard way to do it. For example, in [11], a
followup study was conducted on several tasks in which the GPT-2 model was validated; using bloom
filters, 8-gram overlaps between the training and validation sets were identified. In the case of GPT-3,
it was decided to discard this data prior to evaluating it using the 13-gram overlap approach [3, 12]. A
different approach was applied in [4] in which they performed perfect match after verbatim processing
to discover an average of 3 percent matches between the C4 dataset and a variety of other validation
datasets. A model based on perplexity is presented in [6].

3 Constructing the dataset and the model

3.1 Dataset Construction

The evaluation of data deduplication methods is difficult due to the lack of a dedicated dataset. Using
over 30,000 distinct Wikipedia articles of varying lengths, we create artificial, nearly duplicated
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Table 1: Results for the different models

Number permutation Threshold N-gram AUC Speed inference test (minutes)

128 0.65 12 0.96 12.21
128 0.80 16 0.94 12.64
64 0.75 12 0.91 11.13

samples. To achieve this we tokenize the texts’ sentences. After that, we randomly select sentences
for removal. Then some sentences were added by taking 2,000 different sentences collected from
300 articles that were not included in the final dataset with a length of 8 to 20 words. Between 87
and 94 percent resemblance was preserved between the original text and the synthetic duplicate.
With this method, we were able to create a 6,258 artificial articles created from the original 24,999.
Obtaining in total a database with 31,257 texts, including duplicates and originals, 6,258 labeled as
duplicates and 24,999 as non-duplicates.We also construct a test data set of 6,286 articles using the
same methodology to validate our results, 1,258 labeled as duplicates and 5,028 as non-duplicates.

3.2 Model

One purpose of this project is to create methods for large datasets, hence the model must be scalable.
The model used is based on Local Sensitive Hashing (LSH) [13]. The model is known as the
classic LSH technique or MinHash, which groups the samples into buckets after being encoded
using Minhash functions, where each sample in a bucket is likely to have a low Jaccard Distance,
as measured by character n-grams [1, 8]. Finally, members of the same bucket are compared using
Jaccard similarity; if the Jaccard similarity exceeds the threshold hyperparameter, two documents are
considered "the same". The ability to compare samples only to samples that fall into the same bucket
makes LSH O(N) to evaluate, as opposed to O(N2) (which applies to most k-nearest-neighbors
approaches) on a dataset of N points [7, 9].

3.3 Metrics

The models were evaluated using two key measures: speed and AUC. AUC was used instead of
accuracy, since finding duplicate data is necessary but not at the expense of eliminating good data.

4 Tuning and Evaluating

4.1 Model Tuning

The model has three hyperparameters: the number of hashing functions, the size of each character
n-gram, and the threshold for classifying an example as duplicate. Despite the fact that there are
superior combinations of values in the training results, none of the combinations produced an AUC
below 0.8. This means that while the choice of hyperparameters is pertinent and may vary depending
on the dataset, the method has broad applicability.

4.2 Evaluation

The model was evaluated using the previously specified testing dataset and the three models with the
greatest AUC. The evaluation findings showed the generalization of the models, since none of the 3
models utilized show a significant drop in AUC values. Results in Table 2.

5 Conclusion

Tools that ensure the data’s quality will become highly significant. Data duplication is a common
issue that arises during the development of big datasets. We provide a model in this work that
enables the elimination of this data. Additionally, the establishment of a dataset for measuring their
performance was discussed. The complete source code is available [2].
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Table 2: Results for the different models

Dataset % Duplicated

PTB 2.67%
WikiText-2 0.66%

Enwik8 7.50%
Text8 2.34%

WikiText-3 9.09%
1BW 13.19%
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