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ABSTRACT
We present our new alignment model Model 3P for cross-

lingual word-to-phoneme alignment, and show that unsuper-
vised learning of word segmentation is more accurate when
information of another language is used. Word segmentation
with cross-lingual information is highly relevant to bootstrap
pronunciation dictionaries from audio data for Automatic
Speech Recognition, bypass the written form in Speech-to-
Speech Translation or build the vocabulary of an unseen
language, particularly in the context of under-resourced lan-
guages. Using Model 3P for the alignment between English
words and Spanish phonemes outperforms a state-of-the-art
monolingual word segmentation approach [1] on the BTEC
corpus [2] by up to 42% absolute in F-Score on the phoneme
level and a GIZA++ alignment based on IBM Model 3 by up
to 17%.

Index Terms— alignment model, word segmentation,
under-resourced language, speech-to-speech translation

1. INTRODUCTION

There are over 6,900 living languages and dialects in the
world [3]. Automatic Speech Recognition (ASR) and Ma-
chine Translation (MT) systems exist only for a few of them
due to the large amount of training data needed to train them.
Transcribed speech resources, large amounts of text for lan-
guage modeling, pronunciation dictionaries, and parallel text
corpora are of great importance to create speech processing
systems. However, languages with few linguistic resources
may suddenly appear in the focus of interest. For instance, in
the scope of international relief operations, porting language
technology rapidly and economically to new unseen and
under-resourced languages is in particular suitable. Another
challenge is that a lot of the world’s languages and dialects
do not have a written script despite their widespread use
for oral communication [4, 5], whereas language technology
generally requires a written script nowadays.

In this paper, we take first steps towards gathering train-
ing data for ASR and MT systems for an unseen and under-
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resourced target language rapidly and at low cost: We seg-
ment phoneme sequences into word units using information
from another language. These word units can be used to boot-
strap and enrich pronunciation dictionaries from audio data
for ASR or build the vocabulary of an unseen language. They
can also be used to bypass the written form in those systems in
order to save costs for manual transcriptions and tackle non-
written languages.

Our method benefits from the fact that written sentences
are available in several economically viable languages such
as English. We assume that a speaker is available who un-
derstands English and who speaks translations of the English
sentences in his or her mother tongue. This is not a strong as-
sumption, since human simultaneous translations happen fre-
quently in the real world. Our goal is to exploit the phonetic
output from the audio recordings of such human translators,
so that the following scenario comes within reach (Figure 1):

1) We recognize the spoken translations with a language
independent phoneme recognizer. 2) We build an alignment
between words in the written English sentence and phonemes
in the corresponding recognized phoneme sequence in the tar-
get language. 3) Using this cross-lingual alignment, we seg-
ment the phoneme sequence into word units. 4a) The word
segmentation induces phonetic transcriptions of words in the
target language, which are used in a pronunciation dictionary
for ASR systems. 4b) The segmented phoneme sequence is
replaced by a sequence of target word tokens. This results in
a parallel corpus on the word level, which serves as training
data for a Statistical MT (SMT) system as described in [6].

Since we operate only at the phoneme level on the tar-
get side, we implicitly introduce an artificial writing system,
where the words are represented by their pronunciations.

This paper presents the first steps towards this scenario by
mainly focusing on steps 2 and 3. We present a new alignment
model Model 3P, which is suitable for cross-lingually align-
ing words to phonemes. Furthermore, we investigate word
segmentation and alignment quality with different phoneme
error rates. In the next section, we present monolingual and
cross-lingual methods of other researchers for word segmen-
tation. Section 3 gives an overview of the functionality of the
alignment model IBM Model 3. In Section 4, we introduce
Model 3P. Our experimental setup is described in Section 5.



Fig. 1. Scenario.

We present our results in Section 6. In Section 7, we conclude
our work and describe our further steps.

2. RELATED WORK

The following monolingual methods for word segmenta-
tion have been used in the past: First, Minimal Description
Length analysis [7, 8] approximates the optimal compres-
sion of a (phoneme-)string (corresponding to its Kolmogorov
complexity). Assuming that a word sequence of a language
is the optimal compression of the corresponding phoneme
sequence, the data segmentation induced by such compres-
sion methods is taken as the word segmentation. The second
approach uses adaptor grammars, which are context-free
grammars that learn new rules from the training data [9].
Since recent studies underline the feasibility of applying
adaptor grammars to the word segmentation problem [1],
we representatively use them in Section 6 for a monolingual
word segmentation method.

In our approach, we use the information of a parallel
corpus between word sequences in the source language and
phoneme sequences in the target language similar to [6]. In
an oracle experiment, they replace the words in the target
language with their pronunciations and remove word bound-
ary markers. For segmenting these phoneme sequences into
words, however, they run a monolingual unsupervised al-
gorithm in contrast to using cross-lingual word-to-phoneme
alignment. They use the resulting word sequences in the train-
ing process of an MT system and show that even with low
word accuracy of their word segmentation algorithm (55.2%),
vocabulary extraction efforts are applicable to MT.

Fig. 2. Word alignment.

The authors in [10] use the word-to-word aligner GIZA++
[11] to align English word sequences to Spanish phoneme se-
quences to extract training data for language technology from
human simultaneously spoken translations. In this paper, we
show that even if the found word-to-phoneme alignments
in [10] have acceptable quality on correct phonetic transcrip-
tions, the word segmentation precision is not significantly
higher than in a monolingual approach when phoneme recog-
nition errors are more common. Therefore, we propose a
new alignment model for word-to-phoneme alignment and
achieve significantly higher word segmentation and align-
ment quality on correct phoneme sequences as well as with
simulated phoneme recognition errors.

3. IBM MODEL 3

As our approach is highly inspired by ideas originating from
SMT, we briefly discuss those in this section. The central data
structure in SMT is the word alignment, which identifies word
pairs in parallel corpora that are translations of one another.
For instance, the alignment in Fig. 2 indicates that the Span-
ish word esto is a possible translation of the English word
this. Various statistical models for estimating the probabil-
ity of such alignments exist in the literature, such as the HMM
model [12], the IBM Model hierarchy 1-5 [13], and their vari-
ations [14, 11]. They differ in the set of parameters, forms of
restrictions or deficiency. GIZA++ [11] is an implementation
of the IBM Models and the HMM model widely used in SMT
for automatically finding word-to-word alignments.

Our proposed alignment model (Model 3P) is an exten-
sion of the IBM Model 3 [13]. The parameters of the latter
model are composed of a set of fertility probabilities n(·|·),
p0, p1, a set of translation probabilities t(·|·), and a set of
distortion probabilities d(·|·). According to IBM Model 3,
the following generative process produces the target lan-
guage sentence f from a source language sentence e with
length l [15].

1. For each source word ei indexed by i = 1, 2, ..., l,
choose the fertility φi with probability n(φi|ei).

2. Choose the number φ0 of “spurious” target words to be
generated from e0 = NULL, using probability p1 and
the sum of fertilities from step 1.

3. Let m =
∑l
i=0 φi.

4. For each i = 0, 1, 2, ..., l, and each k = 1, 2, ..., φi,
choose a target word τik with probability t(τ ik|ei).



5. For each i = 1, 2, ..., l, and each k = 1, 2, ..., φi,
choose target position πik with probability d(πik|i, l,m).

6. For each k = 1, 2, ..., φ0, choose a position π0k from
the φ0−k+1 remaining vacant positions in 1, 2, ...,m,
for a total probability of 1/φ0!.

7. Output the target sentence with words τik in positions
πik (0 ≤ i ≤ l, 1 ≤ k ≤ φi).

Figure 3 illustrates the generation of the Spanish sentence
Para qué se usa esto from the English sentence What’s this
used for. Equation 1 states the process as a general formula:

P (a, f |e) =
(m− φ0

φ0

)
· p0m−2φ0 · p1φ0 ·

l∏
i=1

n(φi|ei)·

m∏
j=1

t(fj |eaj ) ·
m∏

j:aj 6=0

d(j|aj , l,m)
l∏
i=1

φi!

(1)

The alignment a is represented as a vector of integers, in
which ai stores the position of the source word connected to
the target word fi. For instance, a = (4, 1, 1, 3, 2) for the
alignment in Figure 2.

4. MODEL 3P

Statistical alignment models for word-to-word alignment are
well-studied in SMT literature. However, in step 3 of our ap-
proach outlined in Section 1, aligning words in the source lan-
guage with phonemes in the target language is required. One
method for automatically obtaining such word-to-phoneme
alignments is to use word-to-word alignment models from
SMT. Authors in [10] used a perfect phoneme transcription
on the target side, and ran the word-to-word aligner GIZA++
to align English words to Spanish phonemes. The alignment
error rate (AER) of the found alignments was comparable
to similar experiments with words instead of phonemes on
the target side. Our experiments in Section 6 suggest that
significantly better results can be achieved by using our
new alignment model Model 3P for word-to-phoneme align-
ment, in particular with respect to word segmentation quality.
Model 3P extends the IBM Model 3 by additional depen-
dencies for the translation probabilities t(·|·) and a set of
word length probabilities o(·|·). The generative process upon
which it is based can be described as follows:

1. For each source word ei indexed by i = 1, 2, ..., l,
choose the fertility φi with probability n(φi|ei).

2. Choose the number φ0 of “spurious” target words to be
generated from e0 = NULL, using probability p1 and
the sum of fertilities from step 1.

3. Let m =
∑l
i=0 φi.

4. For each i = 1, 2, ..., l, and each k = 1, 2, ..., φi,
choose a target word position πik with probability
d(πik|i, l,m).

Fig. 3. Generative process in IBM Model 3.

Fig. 4. Generative process in Model 3P.

5. For each k = 1, 2, ..., φ0, choose a word position π0k
from the φ0 − k + 1 remaining vacant positions in
1, 2, ...,m, for a total probability of 1/φ0!.

6. For each i = 0, 1, ..., l, and each k = 1, 2, ..., φi,
choose the word length ψik with probability o(ψik|ei).

7. For each i = 0, 1, ..., l, and each k = 1, 2, ..., φi, and
each j = 1, 2, ..., ψik, choose a target phoneme τikj
with probability t(τikj |ei, j).

8. Output the target phoneme sequence with phonemes
τikj in positions πik (0 ≤ i ≤ l, 1 ≤ k ≤ φi, 1 ≤
j ≤ ψik).

Besides the fact that Model 3P skips step 4 of IBM
Model 3 (lexical translation), both models are identical until

Fig. 5. Alignments in Model 3P.



applying the distortion model (step 6 or step 5, respectively).
At this point, we can regard the target sequence in Model 3P
as a sequence of anonymous tokens; each is a placeholder for
a target word. In step 6, we decide for each of these tokens
how many phonemes they produce according to the word
length probabilities o(·|·). The next step fills in the phonemes
itself, depending on the source word ei and their phoneme
position j in the target word. Figure 4 illustrates an instance
of the generative process of Model 3P.

In Model 3P, an alignmentA ∈ {N∪{×}}4×m is a matrix
rather than an integer vector like in IBM Model 3. It captures
model decisions made in the fertility and word length step,
which would be hidden in an integer vector representation:

• A0j : English word position connected to the j-th target
phoneme

• A1j : Position of the target word belonging to the j-th
target phoneme

• A2j : Word length in phonemes of the target word A1j

• A3j : Phoneme position of the j-th target phoneme in
the corresponding target word

An example alignment is shown in Figure 5. The word
boundary between the 6th and 7th phoneme would be not re-
constructible in a simple integer vector representation. Equa-
tion 2 expresses Model 3P as a general formula:

P (A, f |e) =
(k − φ0

φ0

)
· p0k−2φ0 · p1φ0

·
l∏
i=1

(n(φi|ei) · φi!) ·
m∏
j=1

t(fj |eA0j
, A3j)

·
m∏

j:A0j 6=0,A1j 6=×
(d(A1j |A0j , l, k) · o(A2j |eA0j

))

(2)

5. EXPERIMENTAL SETUP

5.1. Corpus

Our results are based on experiments with a subset of the
English-Spanish Basic Travel Expression Corpus (BTEC) [2].
This parallel corpus consists of conversations considered to be
useful for people traveling in another country. We removed
sentences longer than 50 words or sentence pairs exceeding
a word ratio of 9:1 and ended up with 123k sentence pairs
and vocabulary sizes of 12k for English and 20k for Spanish.
In our experiments, we segment Spanish (unseen target lan-
guage) phoneme sequences into word units with the help of
their English (source language) written translations. For ini-
tial experiments, we use correct phoneme sequences, which
we generated by replacing the Spanish words with their pro-
nunciations and removing word boundary markers. The pro-
nunciations were taken from a pronunciation dictionary or
generated with a Spanish grapheme-to-phoneme model. The
Spanish phoneme set consists of 35 phonemes.
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Fig. 6. Phoneme Error Rate over λ.

5.2. Phoneme Errors

We intersperse the correct phoneme sequences with phoneme
errors to investigate the performance of different word seg-
mentation approaches depending on the underlying phoneme
error rate (PER). In order to imitate recognition errors re-
alistically, we trained a phoneme recognizer on the Spanish
GlobalPhone corpus [16] and used the NIST sclite scor-
ing and evaluation tool [17] to create its confusion matrix
R ∈ R36×36. Rso contains the probability PR(o|s) that the
phoneme recognizer confuses the stimulus phoneme s with
the observed phoneme o (substitution). An additional row and
a column model insertions and deletions, so that all elements
in a row sum up to 1 and induce a probability distribution.
The Spanish phoneme recognizer has a PER of 25.3%. We
smooth R with λ ∈ [0, 1] to control the PER. We obtain a
disturbed phoneme sequence by replacing each phoneme s in
the perfect phoneme transcription with a phoneme o with the
probability Pλ(o|s). Figure 6 shows, that the resulting PER
is linear in λ. Although errors made by real phoneme recog-
nizers may not be context-independent like in this approach,
we feel that it is sufficient to provide a proof of concept for
Model 3P under conditions with phoneme errors.

6. EVALUATION

6.1. Systems

We compare the performance of three different unsupervised
approaches to word segmentation.

1. Adaptor Grammars. We use the implementation
from [9] with the colloc-syllable grammar represen-
tatively for unsupervised monolingual word segmenta-
tion methods. This grammar requires a mapping of the
phonemes to a vowel and a consonant set.

2. GIZA++. The 2nd system uses GIZA++ [11] to obtain
word-to-phoneme alignments in a parallel corpus in-
ducing a word segmentation, similar to [10]. Setting the
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Fig. 7. Word segmentation quality over the Phoneme Error Rate.

GIZA++ parameters maxfertility to 12, deficientdistor-
tionmodelforemptyword to 1, and empropforemptyword
to 0.1 has been empirically proven to enhance word-to-
phoneme alignment quality.

3. Model 3P. The 3rd system is based on our multi-
threaded implementation of Model 3P1. The align-
ments were found after 10 iterations of the expectation
maximization algorithm. The Model 3P parameters
were initialized using the alignments found by the 2nd
system (GIZA++), similar to the parameter transfer
between the models of the IBM Model hierarchy. The
M-step conducts 8,500 iterations of a Genetic Algo-
rithm [18] with the help of the EvA 2 Toolkit [19].
Inserting, removing, and moving word boundaries and
realigning a target word to a new source word defined
the set of possible mutations. A single-point cross-over
operator was used.

6.2. Alignment Performance

Figure 8 shows the alignment performance of both, GIZA++
and Model 3P over the PER. The reference alignments were
generated by running GIZA++ with default parameters on
the word level, and then replacing the Spanish words with
their pronunciations afterwards. The Alignment Error Rate
(AER) [14] of GIZA++’s word-to-phoneme alignments is up
to 13.6% higher than for Model 3P alignments. The AER for
both systems increase proportionally with the PER, GIZA++
slightly more rapidly than Model 3P.

6.3. Word Segmentation Performance

The quality of the found word segmentations is summarized
in Figure 7 for all three systems. On correct phoneme se-
quences, we achieve an F-Score [20] of 76.5%, which is a
great improvement over the other systems (34.1% with the

1Available at http : //pisa.googlecode.com/
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monolingual approach, 59.5% with GIZA++). The word ac-
curacy of Model 3P is 90.1%. Again, we observe a linear
decline for both cross-lingual approaches with increasing
PER. Given the definition of vowel and consonant sets, the
monolingual approach seems to be more robust against recog-
nition errors, but comes with not more than 34.1% F-Score.
With a PER of 25.3%, word segmentations based on the
monolingual approach and GIZA++ have approximately the
same precision. Applying Model 3P outperforms both other
methods regardless of the PER. The accuracy is still 83.9%
on a phoneme sequence containing the 25.3% errors pro-
duced by our phoneme recognizer. From the 123k sentence,
each 5th sentence contains completely correct segmented
word units with Model 3P. This means that found word units
often correspond to real Spanish words. With GIZA++, it
is only each 12th. A look at some segmentation outputs of
Model 3P reveals that it has rather problems in segmenting
short Spanish words containing one or two phonemes such as
“la” and “a” than longer ones. Furthermore, off-by-one errors
appear at morphological boundaries and at words with only
one phoneme. The segmentation of long and rare words is
successful if adjacent words are frequent.



7. CONCLUSION AND FUTURE WORK

The word segmentation problem describes the task of seg-
menting phoneme sequences into word units. We have inves-
tigated three different unsupervised algorithms for automati-
cally finding word boundaries in phonetic transcriptions. We
showed that using information from another language rather
than a pure monolingual approach helps to find better segmen-
tations on correct phoneme sequences. A simple way to in-
corporate cross-lingual information is to apply word-to-word
alignment models from SMT to align words of the other lan-
guage to the phonemes of the target language. However, with
these word-to-word alignment models the word segmenta-
tion precision is not significantly higher than in the monolin-
gual approach when phoneme recognition errors are common.
Therefore we proposed the new alignment model Model 3P
for cross-lingual word-to-phoneme alignment, which extends
the generative process of IBM Model 3 by a word length step
and additional dependencies for the lexical translation proba-
bilities. With this new model, we obtain considerably better
word segmentations than with both previous methods. Us-
ing Model 3P for the alignment between English words and
Spanish phonemes outperformed a state-of-the-art monolin-
gual word segmentation approach on the BTEC corpus by
up to 42% absolute in F-Score on the phoneme level and a
GIZA++ alignment based on IBM Model 3 by up to 17%. We
report a word accuracy of 90.1% on correct phoneme tran-
scriptions, and still 83.9% on a phoneme sequence containing
the 25.3% errors produced by our phoneme recognizer.

In the near future, we plan to explore our approach on
other language pairs. Furthermore, we are working on an
algorithm that iteratively extracts phoneme sequences, in-
duces phonetic transcriptions of words and compensates for
alignment and phoneme recognition errors. According to the
steps 4a) and 4b) of the scenario in Section 1, our goal is to
use the resulting word sequences in the training process of
an MT system and bootstrap pronunciation dictionaries for
under-resourced languages, and those that are not written at
all.
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