1. Overview

Long-term Goals
- Bootstrap speech technology for non-written and under-resourced languages
- Given: Audio data
 - Their written translations in another language (e.g., English)
- Collect training data for ASR and MT systems rapidly and at low cost
 - Pronunciation dictionary
 - Parallel corpus, language model
- **Goal of this Paper**
 - Segment phoneme sequences into word units using the written translations
 - Simulate phoneme recognition errors realistically
 - Compare our cross-lingual word segmentation method to monolingual ones, e.g., Adaptor Grammars (Johnson, 2008)

2. Cross-Lingual Alignment

IBM Model 3

Problem: Generative story does not fit word-to-phoneme alignment

Model 3P

- Extends generative story of IBM Model 3 with additional steps
- Uses GIZA++ alignments to initialize Model 3P parameters
- Then our PISA alignment tool\(^1\) applies EM algorithm

3. Experiments and Results

Compare:
1. Adaptor Grammars (Monolingual)
2. GIZA++ word-to-phoneme alignments
3. Model 3P

Experimental Setup
- English-Spanish BTEC corpus (123k sentence pairs)
- Phoneme recognition errors up to 25.3% were simulated using the confusion matrix of a Spanish phoneme recognizer trained on the Spanish portion of GlobalPhone (Schultz, 2002)

Results

<table>
<thead>
<tr>
<th>F-Score</th>
<th>0 %</th>
<th>5 %</th>
<th>10 %</th>
<th>15 %</th>
<th>20 %</th>
<th>25 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phoneme Error Rate</td>
<td>0 %</td>
<td>20 %</td>
<td>40 %</td>
<td>60 %</td>
<td>80 %</td>
<td>100 %</td>
</tr>
</tbody>
</table>
