1. Overview

Long-term Goals

- Bootstrap speech technology for nonwritten and under-resourced languages
- Given - Audio data
- Their written translations in another language (e.g. English)
- Collect training data for ASR and MT systems rapidly and at low cost
- Pronunciation dictionary
- Parallel corpus, language model

Target language audio	English words corr. to target audio
Phoneme recognition	Cross-lingual alignment
Phoneme	
sequence	
Werd	
Wegmentation	

Goal of this Paper

- Segment phoneme sequences into word units using the written translations
- Simulate phoneme recognition errors realistically
- Compare our cross-lingual word segmentation method to monolingual ones, e.g. Adaptor Grammars (Johnson, 2008)

Cross-Lingual:

- GIZA++, Model 3P

Phoneme sequence including word boundaries
\downarrow
Pronunciation dictionary / Parallel corpus with "word labels"

Word assignment / Pronunciation dictionary

Cross-Lingual Alignment

IBM Model 3

Problem: Generative story does not fit word-to-phoneme alignment

3. Experiments and Results

Compare:

1. Adaptor Grammars (Monolingual)
2. GIZA++ word-to-phoneme alignments
3. Model 3P

Experimental Setup

- English-Spanish BTEC corpus (123k sentence pairs)
- Phoneme recognition errors up to 25.3% were simulated using the confusion matrix of a Spanish phoneme recognizer trained on the Spanish portion of GlobalPhone (Schultz, 2002)

Results

